
Introduction to Embedded Microcomputer Systems Lecture 11.1

Jonathan W. Valvano

Recap
 Subroutines, the stack, switches, LEDs

Overview
 Pointers
 Indexed mode addressing
 TCNT (free running 16-bit time)
 Introduction to Lab 3
 Can we collect data to prove it works?
 Input, output, time

Read sections 4.5, 6.1, 6.2, 6.3 and 6.11

Pt

Not pointing to anything Pointing to Object1

Pt Object1

Object2

Object1

Object2

Pointing to Object2

Pt Object1

Object2

Figure 6.1. Pointers are addresses pointing to objects. The objects may be data, functions, or other pointers.

6.1. Indexed addressing modes used in implement pointers

Array or string

Pt

Linked list

Pt

FIFO queue

GetPt

PutPt

Stack

SP

Figure 6.2. Examples of data structures that utilize pointers.

 If Register X or Y contains an address, we say it points into memory

Definitions in C
unsigned char data; // 8-bit value
unsigned char out; // 8-bit value
unsigned char *pt; // 16-bit address

Definitions in assembly
data rmb 1 ; 8-bit value
out rmb 1 ; 8-bit value
pt rmb 2 ; 16-bit address

Initialization in C
 pt = &data; // pointer to data

Initialization in assembly
 ldx #data // pointer to data
 stx pt

Dereference in C
 out = *pt; // fetch value at pointer

Introduction to Embedded Microcomputer Systems Lecture 11.2

Jonathan W. Valvano

Dereference in assembly
 ldx pt ; X points to data
 ldaa 0,x ; fetch value at pointer
 staa out
;read 8-bit contents pointed to by X

X data
pointer

A

ldaa 0,x

16-bit definitions in C
unsigned short data; // 16-bit value
unsigned short out; // 16-bit value
unsigned short *pt; // 16-bit address

16-bit definitions in assembly
data rmb 2 ; 16-bit value
out rmb 2 ; 16-bit value
pt rmb 2 ; 16-bit address

Initialization in C
 pt = &data; // pointer to data

Initialization in assembly
 ldx #data // pointer to data
 stx pt

16-bit dereference in C
 out = *pt; // fetch value at pointer

16-bit dereference in assembly
 ldy pt ; Y points to data
 ldd 0,y ; 16-bit fetch at pointer
 std out

;read 16-bit contents pointed to by Y

Y
pointer

ldd 0,y

A Bdata

6.1.1. Indexed addressing mode
Indexed addressing uses a fixed offset with the 16-bit registers: X, Y, SP, or PC.

5-bit (-16 to +15),
9-bit (-256 to +127), or
16-bit

machine opcode operand comment
$6A5C staa -4,Y [Y-4] = RegA
Let n,R be the indexed address

fixed offset n and
index register R is the index register, then
EAR will be R+n.

Introduction to Embedded Microcomputer Systems Lecture 11.3

Jonathan W. Valvano

Y $0823 $081E
$081F $56
$0820
$0821

A $56

$F800
$F801 $6A
$F802 $5C
$F803

staa -4,Y}

EEPROMRAM

Figure 6.3. Example of the 9S12 indexed addressing mode.

16-bit data structures with indexed addressing is different in assembly versus in C.
Prime fdb 1,2,3,5,7,11,13,17,19,23

The equivalent ROM-based definition is C would be
unsigned short const Prime[10]=

{1,2,3,5,7,11,13,17,19,23};

Want to fetch the 7 from Prime[4] In assembly,
 ldx #Prime ;pointer to the structure
 ldd 8,x ;read element number 4
or if we could have fetched it directly as
 ldd Prime+8 ;read Prime[4]
Either way, manipulating addresses in assembly always involves the physical byte-address regardless of the
precision of the data.

Want to increment the pointer to the next element.
In C, we define the pointer as
unsigned short const *Pt;
and initialize it as
 Pt = Prime;

To increment the pointer to the next element

in C, use the expression Pt++.
In assembly, we can define the pointer in RAM as
Pt rmb 2 ;16-bit pointer to Prime
and initialize it as
 ldx #Prime
 stx Pt ;pointer to Prime[0]
However, to increment the pointer to the next element we have to add 2 to the pointer. E.g.,
 ldx Pt ;previous pointer
 inx
 inx ;next element in the 16-bit structure
 stx Pt

6.1.2. Auto Pre/Post Decrement/Increment Indexed addressing mode
 Optimized addressing modes to make it run fast
 Not on Exam1
 Not really needed for Lab

Regular access of an array
 staa 0,Y ;Store RegA at 2345,
 iny ;Reg Y=2346

Post-increment addressing first accesses the data then adds to the index register:
 staa 1,Y+ ;Store at 2345, then Reg Y=2346

Regular access of an array, Y points to 16-bit element at 2344
 iny ;Reg Y=2345
 iny ;Reg Y=2346
 std 0,Y ;Store RegD at 2346,2347

Introduction to Embedded Microcomputer Systems Lecture 11.4

Jonathan W. Valvano

Pre-increment addressing first adds to the index register then accesses the data:
 std 2,+Y ;Reg Y=2346, then store at 2346

Post-decrement addressing first accesses data then subtracts from index register:
 staa 1,Y- ;Store at 2345, then Reg Y=2344

Pre-decrement addressing first subtracts from index register then accesses the data:
 staa 1,-Y ;Reg Y=2344, then store at 2344

6.1.3. Accumulator Offset Indexed addressing mode
 Two registers combined to make effective address
 One register points to array, other register has array index
 Not on Exam1
 Not really needed for Lab

The offset is located in one of the accumulators A, B or D,
and the base address is in one of the 16-bit registers: X, Y, SP, or PC.

 ldab #4
 ldy #2345
 staa B,Y ;Store at 2349 (B & Y unchanged)

6.1.4. Indexed Indirect addressing mode
 Optimized addressing modes for complex data structures
 Not on Exam1
 Not needed for Lab
 ldy #2345
 staa [-4,Y]
;fetch 16-bit address from 2341, store 56 at 1234

1233
1234 56
1235

2340
2341 12
2342 34

Y 2345

A 56

Figure 6.6. Example of the 9S12 indexed-indirect addressing mode.

6.1.5. Accumulator D Offset Indexed Indirect addressing mode
 Optimized addressing modes for complex data structures
 Not on Exam1
 Not needed for Lab
 ldd #4
 ldy #2341
 stx [D,Y]
;Store copy of value in Reg X at 1234 (D & Y unchanged)

1233
1234 56
1235 78

2344
2345 12
2346 34

Y 2341

X 5678
D 0004

D+Y=2345

Figure 6.7. Example of the 9S12 accumulator-offset indexed-indirect addressing mode.

6.1.6. Post-byte machine coded for indexed addressing
For more information see Tables 6.1 and 6.2 in the book

 Show xb- table
1) Open CPU12rg.pdf
2) Click on Indexed Addressing Mode Postbyte Encoding (xb)

Introduction to Embedded Microcomputer Systems Lecture 11.5

Jonathan W. Valvano

6.1.6. Load effective address instructions

 leax idx ;RegX=EA
 leay idx ;RegY=EA
 leas idx ;RegS=EA

In each of the following cases, the effective address, EA, is loaded into Register X.
 leax m,r ;IDX 5-bit index, X=r+m (-16 to 15)
 leax v,+r ;IDX pre-inc, r=r+v, X=r (1 to 8)
 leax v,-r ;IDX pre-dec, r=r-v, X=r (1 to 8)
 leax v,r+ ;IDX post-inc, X=r, r=r+v (1 to 8)
 leax v,r- ;IDX post-dec, X=r, r=r-v (1 to 8)
 leax A,r ;IDX Reg A offset, X=r+A, zero padded
 leax B,r ;IDX Reg B offset, X=r+B, zero padded
 leax D,r ;IDX Reg D offset, X=r+D
 leax q,r ;IDX1 9-bit index, X=r+q (-256 to 255)
 leax W,r ;IDX2 16-bit index, X=r+W (-32768 to 65535)
where r is Reg X, Y, SP, or PC, and the fixed constants are
 m is any signed 5-bit -16 to +15
 q is any signed 9-bit -256 to +255
 v is any unsigned 3 bit 1 to 8
 W is any signed 16-bit -32768 to +32767 or any unsigned 16-bit 0 to 65535

4.5. 16-bit timer

$0044
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 TCNT

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$0046 TEN TSWAI TSFRZ TFFCA 0 0 0 0 TSCR1
$004D TOI 0 0 0 TCRE PR2 PR1 PR0 TSCR2
$004F TOF 0 0 0 0 0 0 0 TFLG2

Table 4.11. 9S12 timer ports.

E = 8 MHz E = 24 MHz

PR2

PR1

PR0

Divide

by
TCNT
period

TCNT
frequency

TCNT
period

TCNT
frequency

0 0 0 1 125 ns 8 MHz 41.7 ns 24 MHz
0 0 1 2 250 ns 4 MHz 83.3 ns 12 MHz
0 1 0 4 500 ns 2 MHz 167 ns 6 MHz
0 1 1 8 1 µs 1 MHz 333 ns 3 MHz
1 0 0 16 2 µs 500 kHz 667 ns 1.5 MHz
1 0 1 32 4 µs 250 kHz 1.33 µs 667 kHz
1 1 0 64 8 µs 125 kHz 2.67 µs 333 kHz
1 1 1 128 16 µs 62.5 kHz 5.33 µs 167 kHz

Table 4.12. Given an E clock frequency, the PR2 PR1 and PR0 bits define the TCNT rate.

; 9S12DP512 at 8 MHz
; Enable TCNT at 1us
Timer_Init
 movb #$80,TSCR1 ;enable
 movb #$03,TSCR2 ;divide by 8
 rts

Introduction to Embedded Microcomputer Systems Lecture 11.6

Jonathan W. Valvano

6.11. Functional Debugging

6.11.1. Instrumentation: dump into array without filtering
 Assume happy is strategic 8-bit variable.
SIZE equ 20
Buf rmb SIZE
Pt rmb 2

#define SIZE 20
unsigned char Buf[SIZE];
unsigned char *Pt;

Pt will point into the buffer.
Pt must be initialized to point to the beginning, before the debugging begins.
 ldx #Buf
 stx Pt

 Pt = Buf;

The debugging instrument saves the strategic variable into the Buffer.

Save
 pshb
 pshx ;save
 ldx Pt ;X=>Buf
 cpx #Buf+SIZE
 bhs done ;skip if full
 ldab happy
 stab 0,X ;save happy
 inx ;next address
 stx Pt
done
 pulx
 pulb
 rts

void Save(void){
 if(Pt < &Buf[SIZE]){
 (*Pt) = happy;
 Pt++;
 }
}

Similar to Program 6.37. Instrumentation dump.
Next, you add jsr Save statements at strategic places within the system.
Use the debugger to display the results after program is done

6.2. Arrays
 Random access
 Sequential access.
 An array

equal precision and
allows random access.

The precision is the size of each element.
The length is the number of elements (fixed or variable).
The origin is the index of the first element.
 zero-origin indexing.

In general, let n be the precision of a zero-origin indexed array in bytes.
If I is the index and
 Base is the base address of the array,
then the address of the element at I is
 Base+n*I
 In the previous examples, the length of the array was known.
 One simple mechanism saves the length of the array as the first element.
const char Data[5]={4,0x05,0x06,0x0A,0x09};
const short Powers[6]={5,1,10,100,1000,10000};
We could define these variable length arrays in assembly as
Data fcb 4,$05,$06,$0A,$09
Powers fdb 5,1,10,100,1000,10000

Introduction to Embedded Microcomputer Systems Lecture 11.7

Jonathan W. Valvano

 Another common mechanism to handle variable length is a termination code.

ASCII code name
NUL $00 null
ETX $03 end of text
EOT $04 end of transmission
FF $0C form feed
CR $0D carriage return
ETB $17 end of transmission block

Table 6.3. Typical termination codes

6.3. Strings
 A string is a data structure with

equal size elements
that only allows sequential access.

Example 6.4. Write software to output an ASCII string to the serial port.
Solution
Because the length of the string may be too long to place all the ASCII character into the registers at the same time, call by
reference parameter passing will be used. With call by reference, a pointer to the string will be passed. The function
OutString, shown in Program 6.6, will output the string data to the serial port. The function SCI_OutChar will be
developed later in Chapter 8 and shown as Program 8.2. For now all we need to know is that it outputs a single ASCII character
to the serial port. The main program calls this function twice, with different ASCII strings.

Hello fcc "Hello World"
 fcb 0
CRLF fcb 13,10,0
;Reg X points to the string data
OutString
 ldaa 1,x+ ;next data
 beq done ;0 means end
 jsr SCI_OutChar
 bra OutString
done rts
main lds #$4000
 bsr SCI_Init
mloop ldx #Hello ;first string
 bsr OutString
 ldx #CRLF ;second string
 bsr OutString
 bra mloop

unsigned const char CRLF[3]=
 {13,10,0};

void OutString(unsigned char *pt){
unsigned char letter;
 while(letter = (*pt++)){
 SCI_OutChar(letter);
 }
}
void main(void){
 SCI_Init();
 while(1){
 OutString("Hello World");
 OutString(CRLF);
 }
}

Program 6.6. A variable length string contains ASCII data.

The bottom line
 Pointers are addresses
 Indexed addressing mode used for pointers
 Precision: 8 bit or 16-bit
 Arrays and strings have equal precision elements
 TCNT is a 16-bit free-running clock

