
Introduction to Embedded Microcomputer Systems Lecture 13.1

Jonathan W. Valvano

“There is no reason anyone would want a computer in their home. ”

Ken Olson, president, chairman and founder of Digital Equipment Corporation, 1977

Exam 1 review
 closed book, no calculator
 Lectures 1-10 (no TCNT, indexed, arrays, pointers)
 HW1-3 (some C programming)
 Labs 1, 2, and 3
 Problems on old tests/HW you are not responsible for
1) Definitions (matching or multiple choice)
volatile, nonvolatile, RAM, ROM, port
static efficiency, dynamic efficiency
structured program, call graph, data flow graph
basis, nibble, precision, decimal digits (see table below)
fixed-point, overflow, ceiling and floor, drop out,
bus, address bus, data bus,
memory-mapped, I/O mapped
bus cycle, read cycle, write cycle,
IR, EAR, BIU, CU, ALU, registers,
device driver, reset vector
friendly, mask, toggle,
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128

28 = 256
29 = 512
210 = 1024≈ 103

211 = 2048
212 = 4096
213 = 8192

214 = 16384
215 = 32768
216 = 65536
162 = 256
163 = 4096
164 = 65536

decimal digits exact range exact alternatives ADC bits needed?
3 0 to 999 1,000 10
3½ 0 to 1999 2,000 11
3¾ 0 to 3999 4,000 12
4 0 to 9999 10,000 14
4½ 0 to 19,999 20,000 15
4¾ 0 to 39,999 40,000 16
5 0 to 99,999 100,000 17
5½ 0 to 199,999 200,000 18
5¾ 0 to 399,999 400,000 19
6 0 to 999,999 1,000,000 20
6½ 0 to 199,999 2,000,000 21
6¾ 0 to 3,999,999 4,000,000 22
N 0 to 10N-1 10N
N½ 0 to 2*10N-1 2*10N
N¾ 0 to 4*10N-1 4*10N

Standard definition of decimal digits.

2) Number conversions, 8-bit (fill in the blank)
convert one format to another without a calculator
 signed decimal e.g., -56
 unsigned decimal e.g., 200
 binary e.g., %11001000
 hexadecimal e.g., $C8

Introduction to Embedded Microcomputer Systems Lecture 13.2

Jonathan W. Valvano

I won’t ask you to convert signed binary or signed hex:
 signed binary e.g., -%00101111
 signed hexadecimal e.g., -$2F

fixed-point representations
 given resolution convert between value and integer
 given precision and range choose the fixed-point format

3) Details of executing single instructions
 8-bit addition, subtraction yielding result, N, Z, V, C
 (like HW)
 simplified cycle by cycle execution
 assembly listing to execution cycles (aLec04)
 for indexed mode addresses, for example
 ldaa 4,x
 ldaa 40,x
 ldaa -4,x
 ldaa -40,x
 ldaa $400,x
 ldaa 4,+x
 ldaa 4,-x
 ldaa 4,x+
 ldaa 4,x-
 calculate effective address
 go from assembly to machine code xb
 go from machine code xb to assembly
 simple multiply and divide (mul idiv fdiv)
 stack functions for bsr and rts

4) Simple programs (either C or assembly)
 initialize stack (this automatically happens in C)
 create global variables
 set reset vector (this automatically happens in C)
 specify an I/O pin is an input
 specify an I/O pin is an output
 clear an I/O output pin to zero
 set an I/O output pin to one
 toggle an I/O output pin
 check if an I/O input pin is high or low
 e.g., if PT4 is low then make PM2 high
****study question******
 8-bit operations
 add, sub, shift left, shift right, and, or, eor
 if-then like examples in Chapter 5
 if-then-else
 if((uG1>5)&&(uG2<100)){♪♫♪♫♫}
 while-loop like examples in Chapter 5
 for-loop like those in this lecture
 simple subroutines, parameters passed in registers
 four lines of comments for client
 * purpose
 * inputs: registers, format, units
 * outputs: registers, format, units
 * error possibilities
 called with bsr, returns using rts

Introduction to Embedded Microcomputer Systems Lecture 13.3

Jonathan W. Valvano

5) Switch and LED interfaces (Labs 2, 3, and the book)

6) C programming
How to create a C program, and functions without parameters
void TogglePT0(void){
 PTT = PTT^0x01;
}
void main(void){
 DDRT = DDRT|0x01;
 while(1){
 TogglePT0();
 }
}

How to define global variables (with and without unsigned)
char Data; // 8-bit variable
short D1,D2; // 16-bit variables
long L3; // 32-bit variable
At this point we are not distinguishing between local and global variables, but soon we will make a big deal out of
whether the variable is global or local. So far we have only taught you how to make global variables in assembly.

An integer variable has size that depends on the machine
 (with and without unsigned)
int Z1; // variable

How to read from and write to C variables
 D1 = 100;
 D2 = D1 + 100;

Simple calculations
 Arithmetic operations + - * / % ++ --
 Logical operations | & ^ ~
 Shift operations >> <<

Conditional structures
 Compare operators == != < <= > >=
 Boolean operators && ||
 If-then
 if(D2 < D1){
 D2isLess();
 }
 if(((PTT&0x08)==0x08)&&((PTH&0x03)==0)){
 PT3HighAndPH3210Low();
 }
 If-then-else
 if(D2 < D1){
 D2isLess();
 } else{
 D1isLessOrEqual();
 }
Looping structures
 while-loop (test before each execution of the body)
 while(D2 < 100){
 OverAndOver(); // repeat while D2<100
 }

Introduction to Embedded Microcomputer Systems Lecture 13.4

Jonathan W. Valvano

 do-while-loop (test after each execution of the body)
 do{
 OverAndOver(); // repeat while D2<100
 } while(D2 < 100);

 for-loop (test before each execution of the body)
 for(D2=0; D2<100; D2=D2+1){
 OverAndOver(); // repeat 100 times
 }

Look at previous exams to see the types of information given to you. Notice also the format of the exam and the
expected answers. You will get information a list of instructions and addressing modes You will also get the CPU12
page(s) for any instruction(s) for which you need to find bus cycles.

it is important to know

• precision (e.g., 8-bit, 16-bit)
• format (e.g., unsigned, signed)

• unsigned, bhi blo bhs and bls
• signed, bgt bls bge and ble
• either signed or unsigned, beq and bne

It takes three steps

1. read the first value into a register
2. compare the first value with the second value
3. conditional branch

Compare the four possible inequalities
Assume PTT is a unsigned 8-bit input port, and
let Threshold be an unsigned 8-bit global variable
C code assembly code
if(PTT > Threshold){
 ♪♫♪♫♫
}

 ldab PTT
 cmpb Threshold
 bls next
 ♪♫♪♫♫
next

if(PTT >= Threshold){
 ♪♫♪♫♫
}

 ldab PTT
 cmpb Threshold
 blo next
 ♪♫♪♫♫
next

if(PTT < Threshold){
 ♪♫♪♫♫
}

 ldab PTT
 cmpb Threshold
 bhs next
 ♪♫♪♫♫
next

if(PTT <= Threshold){
 ♪♫♪♫♫
}

 ldab PTT
 cmpb Threshold
 bhi next
 ♪♫♪♫♫
next

Introduction to Embedded Microcomputer Systems Lecture 13.5

Jonathan W. Valvano

Compare signed versus unsigned conditionals
Assume uG is an unsigned 8-bit global variable
Assume sG is a signed 8-bit global variable
C code assembly code

if(uG >= 5){
 ♪♫♪♫♫
}

 ldaa uG
 cmpa #5
 blo next
 ♪♫♪♫♫
next

if(sG >= 5){
 ♪♫♪♫♫
}

 ldaa sG
 cmpa #5
 blt next
 ♪♫♪♫♫
next

Compare 8-bit versus 16-bit conditionals
Assume uG1 and uG2 are unsigned 8-bit variables
Assume uH1 and uH2 are unsigned 16-bit variables
C code assembly code

if(uG2 >= uG1){
 ♪♫♪♫♫
}

 ldaa uG2
 cmpa uG1
 blo next
 ♪♫♪♫♫
next

if(uH2 >= uH1){
 ♪♫♪♫♫
}

 ldd uH2
 cpd uH1
 blo next
 ♪♫♪♫♫
next

for(uG=0;uG<5;uG++){
 PTT = uG;
}

 clr uG
loop ldaa uG
 cmpa #5
 bhs next ; stop when uG>=5
 ldaa uG
 staa PTT
 inc uG
 bra loop
next
__

PTT = PTT & ~0x02;
for(i=5;i>0;i--){ // something 5 times
 PTT = PTT^2;
}

 bclr PTT,#$02 ;PT1=0
 ldaa #5 ; loop 5 down to 0
loop ldab PTT ; body of for loop
 eorb #$02 ;toggle PT2
 stab PTT
 dbne A,loop

Introduction to Embedded Microcomputer Systems Lecture 13.6

Jonathan W. Valvano

do{
 ♪♫♪♫♫
}
while(uG < 5);

uG<5
G2

uG > 5

loop ♪♫♪♫♫ ; body of while loop
 ldaa uG
 cmpa #5
 blo loop ; stop when uG>=5

loop
 ♪♫♪♫♫ ; body of while loop
 bra loop

Problem: write code that waits for a switch to be pressed. Assume PP3 is an input with a switch attached.
0) how are we going to test it?
1) flow chart
2) pseudocode
3) assembly
4) testing

The bottom line
 Study previous exam1s
 no indexed mode, no arrays,
 no fixed-point, no pointers
 Study homework 1,2,3,
 Review Labs 1, 2, and 3
 Review lecture notes 1-10

