
Introduction to Embedded Microcomputer Systems Lecture 14.1

Jonathan W. Valvano

Recap
 Timer
 Debugging
 Intrusiveness
 Monitors and dumps

Overview
 Finite state machine

8.7. Finite state machines with statically-allocated
linked structures

8.7.1. Abstraction
Software abstraction
 define a problem with a set of basic abstract
principles
 separate policies mechanisms
Finite State Machine (FSM.)
 inputs, outputs, states, and state transitions
 state graph defines relationships of inputs and outputs

 The three advantages of this abstraction are
 1) it can be faster to develop
 2) it is easier to debug (prove correct) and
 3) it is easier to change

What is a state?
 Description of current conditions

What is a state graph?
 Graphical interconnection between states

What is a controller?
 Software that inputs, outputs, changes state
 Accesses the state graph

What is a finite state machine?
 Input sensors
 Output actuators
 Controller
 State graph

Moore FSM
 output value depends only on the current state, and
 inputs affect the state transitions
 significance is being in a state

input: when to change state

output: how to be in that state

Introduction to Embedded Microcomputer Systems Lecture 14.2

Jonathan W. Valvano

S5
0101

CW
S9

1001CCW

CW
S10
1010CCW

CW
S6

0110CCW
CW

CCW

Mealy FSM depend both on the current state and the inputs.
 output value depends on input and current state
 inputs affect the state transitions.
 significance is the state transition

input: when to change state

output: how to change state

stand sit

recline

hear a noise/
stand up

bored/
sit down

hear a noise/
sit up

tired/
lie down

Moore: Output needed to be in that state
Mealy: Output needed to cause a state change

data structure embodies the FSM
 multiple identically-structured nodes
 statically-allocated fixed-size linked structures
 one-to-one mapping FSM state graph and linked structure
 one structure for each state

linked structure
 pointer (or link) to other nodes (define next states)

table structure
 indices to other nodes (define next states)

Introduction to Embedded Microcomputer Systems Lecture 14.3

Jonathan W. Valvano

Stepper motor controller

This stepper motor FSM has two input signals four outputs.

Many hardware circuits in this class will be drawn with a free drawing tool
PCBArtist, http://www.4pcb.com/
 1) Design- data flow graph, flowchart, pseudocode
 2) Implement in TExaS, debug it
 3) Switch to Real mode
 4) place 9S12 in LOAD mode
 Cable from PC to docking module
 Power applied to embedded system, reset button
 Execute Assemble to download
 Run from debugger, 24 MHz
 5) place in RUN mode
 Power applied to embedded system, reset button
 It’s running at 8 MHz

Write in 9S12C32 assembly
;***
PTAD equ $0270 ; Port AD I/O Register
DDRAD equ $0272 ; Port AD Data Direction Register
ATDDIEN equ $008D ; ATD Input Enable Mask Register
DDRM equ $0252 ; Port M Data Direction Register
PTM equ $0250 ; Port M I/O Register
DDRT equ $0242 ; Port T Data Direction Register
PTT equ $0240 ; Port T I/O Register
TCNT equ $0044 ; Timer Count Register

Introduction to Embedded Microcomputer Systems Lecture 14.4

Jonathan W. Valvano

TSCR1 equ $0046 ; Timer System Control Register1
TSCR2 equ $004D ; Timer System Control Register 2
 org $3800 ; Globals go in 2K Ram
delay ds.w 1 ; number of cycles to wait
start ds.w 1 ; TCNT value at the start of wait
Pt rmb 2 ;pointer to current state

 org $4000
out equ 0 ;8-bit output
wait equ 1 ;time to wait, 32us units
next equ 3 ;4 pointers to next state
S5 fcb $05 ;4-bit output
 fdb 4000
 fdb S5,S9,S6,S5 ;next for each in
S6 fcb $06
 fdb 4000
 fdb S6,S5,S10,S6
S10 fcb $0A
 fdb 4000
 fdb S10,S6,S9,S10
S9 fcb $09
 fdb 4000
 fdb S9,S10,S5,S9
* ROM program
Main lds #$4000
 bsr Timer_Init ; activate TCNT
 bset DDRT,#$03 ; PT1 PT0 output to LEDs
 bset ATDDIEN,#$C0 ; PAD6,7 digital
 bclr DDRAD,#$C0 ; PAD6,7 input
 bset DDRM,#$0F ; PM3-0 output
 movb #$05,PTM ; initial output
 movw #S5,Pt ; initial state
 cli ; allow debugger
loop ldx Pt
 movb out,X,PTM ; step motor
 ldd wait,X
 bsr Timer_Wait ; wait specified time
 ldaa PTAD ; read inputs (negative logic)
 eora #$C0 ; positive logic
 anda #$C0 ; just CCW,CW
 ; 0,40,80,C0
 lsra ; 0,20,40,60
 lsra ; 0,10,20,30
 lsra ; 0,08,10,18
 lsra ; 0,04,08,0C
 lsra ; 0,02,04,06
 leax next,X ; list of pointers
 ldx A,X ; next depends on in
 stx Pt
 ldaa PTT
 eora #$01
 staa PTT ; heart beat
 bra loop
Run in simulator, scan point on PTM output
Run on 9S12C32

Introduction to Embedded Microcomputer Systems Lecture 14.5

Jonathan W. Valvano

Debugging example (running the 9S12C32 stepper program)
 Quit debugger
 Close all windows
 Open stepper.uc
 Execute assemble to download

In Real-Time Debugger
 Click the green Go arrow (press just one button at a time)
 Press just PAD6 (in=10), rotates CW
 Press just PAD7 (in=01), rotates CCW
 What happens if you press both switches?
 Quit debugger

Add a debugging instrument called a dump or a scan
Add to RAM
Dump rmb 1000 ; place for 500 scans
DumpPt rmb 2 ; where to store next
Add to initialization code
 ldx #Dump
 stx DumpPt ;buffer is empty
Add debugging code to end of the loop (right before bra loop)
The place we add this dump/scan is called a ScanPoint
 ldx DumpPt ;pointer to buffer
 cpx #Dump+1000 ;skip if full
 beq skip
 ldy Pt ;data to record
 sty 2,x+ ;record it in buffer
 stx DumpPt ;update pointer
skip

 Execute assemble to download
In Real-Time Debugger
 Set memory address to $3800
 Resize memory window to make it big
 Set the format to 16-bit hexadecimal
 Run and push a button quickly
 Halt
 Observe Dump, see the state changes

 Reset the software
 Set mode to Periodical
 Run and push a button quickly
 Observe Dump, see the state changes

 The bottom line
 Finite state machines provide for abstraction
 Simple controller, complicated state graph
 Simulation (testing), prototype (test), final system (test)

