
Introduction to Embedded Microcomputer Systems Lecture 15.1

Jonathan W. Valvano

Recap
 Finite State Machines
 Being in a state has meaning
 Moore: the output is related to being in a state
 Mealy: the output is required to change state
 Arrows are state transitions: pointers
 1-1 mapping from state graph to data structure

Overview
 Finite State Machines (Section 8.7)
 State graph to C

Pointer is an address
Figure 6.1. Pointers are addresses pointing to objects. The objects may be data, functions, or other pointers.

We have used arrays in Lab 4
We have used the stack for subroutine calls
Lab 5 will create a graph in assembly
This lecture will implement the FSM in C

Arrays in C: Put in RAM if you want to change values
unsigned short Buffer[8];
Arrays in C: Put in ROM if values are fixed
const char Data[4]=
 {0x05,0x06,0x0A,0x09};
Arrays
 Length
 Precision
 Signed/unsigned
 RAM or ROM
Access arrays by index
unsigned char Index;
void Stepper_Init(void){
 DDRT |= 0x0F; // PT3-0 are outputs
 PTT = 0x09; // first data
 Index = 0; // first index
}
void Stepper_CW(void){
 PTT = Data[Index]; // rotate 15deg
 Index = 0x03&(Index+1); // next index
}
Access arrays by pointer
unsigned char *Pt;
void Stepper_Init(void){
 DDRT |= 0x0F; // PT3-0 are outputs
 PTT = 0x09; // first data
 Pt = Data; // pointer to first
}
void Stepper_CW(void){
 PTT = *Pt; // rotate 15deg
 if(Pt == &Data[3]){
 Pt = Data; // pointer to first
 } else{
 Pt++; // next value
 }
}

Pt

Not pointing to anything Pointing to Object1

Pt Object1

Object2

Object1

Object2

Pointing to Object2

Pt Object1

Object2

Array or string

Pt

Linked list

Pt

FIFO queue

GetPt

PutPt

Stack

SP

Introduction to Embedded Microcomputer Systems Lecture 15.2

Jonathan W. Valvano

Variable length arrays can use a termination code
const char Data[5]={0x05,0x06,0x0A,0x09,0};
unsigned char *Pt;
void Stepper_Init(void){
 DDRT |= 0x0F; // PT3-0 are outputs
 PTT = 0x09; // first data
 Pt = Data; // pointer to first
}
void Stepper_CW(void){
 PTT = *Pt; // move stepper
 Pt++; // next address
 if(*Pt == 0){ // end?
 Pt = Data; // start over
 }
}

6.5. Structures
Combine into one object multiple parts with

Different types
signed numbers,
characters,
unsigned numbers,
pointers

Different precision
8-bit,
16-bit
Arrays (must be fixed length)

const struct port{
 unsigned char AndMask; // bits that can change
 unsigned char OrMask; // bits that must stay high
 unsigned char *Addr; // Port Address
 unsigned char Name[10]; // ASCII string
};
typedef const struct port portType;
portType PortT={0x15,0x82,0x0240,"PTT"};

Figure 6.13. A structure collects objects of different sizes into one object.
void OutputT(unsigned char in){
unsigned char new,old;
 old = (*PortT.Addr); // read previous value
 old = old & ~(PortT.AndMask); // clear bits
 new = in & PortT.AndMask; // bits that can change
 new = new | PortT.OrMask; // must be high
 new = new | old;
 (*PortT.Addr) = new; // output
}
void OutputAny(portType *pt, unsigned char in){
unsigned char new,old;
 old = (*pt->Addr); // read previous value
 old = old & ~(pt->AndMask); // clear bits
 new = in & pt->AndMask; // bits that can change
 new = new | pt->OrMask; // must be high
 new = new | old;
 (*pt->Addr) = new; // output
}

$F950 $15
$F951 $82
$F952 $0240
$F954 “PTT”,0,0,0,0,0,0,0

Introduction to Embedded Microcomputer Systems Lecture 15.3

Jonathan W. Valvano

Traffic Light Controller

PT1=0, PT0=0 means no cars exist on either road
PT1=0, PT0=1 means there are cars on the East road
PT1=1, PT0=0 means there are cars on the North road
PT1=1, PT0=1 means there are cars on both roads

North

East
R

G
Y

R Y G

PT1
PT0

PT7
PT6
PT5
PT4
PT3
PT2

9S12

Figure 6.19. Traffic light interface.
 goN, PT7-2 = 100001 makes it green on North and red on East
 waitN, PT7-2 = 100010 makes it yellow on North and red on East
 goE, PT7-2 = 001100 makes it red on North and green on East
 waitE, PT7-2 = 010100 makes it red on North and yellow on East

goN

30

Next if input is 01 or 11

100001

Wait time

01,1100,10
waitN

5
100010

goE

30
001100

waitE

5
010100

00,01,
10,11 01,11

00,01

00,01,10,11

Output

Figure 6.20. Graphical form of a Moore FSM that implements a traffic light.

State \ Input 00 01 10 11
goN (100001,30) goN waitN goN waitN
waitN (100010,5) goE goE goE goE
goE (001100,30) goE goE waitE waitE
waitE (010100,5) goN goN goN goN

Table 6.4. Tabular form of a Moore FSM that implements a traffic light.

// Linked data structure
const struct State {
 unsigned char Out;
 unsigned short Time;
 const struct State *Next[4];};
typedef const struct State STyp;
#define goN &FSM[0]
#define waitN &FSM[1]
#define goE &FSM[2]
#define waitE &FSM[3]
STyp FSM[4]={

Introduction to Embedded Microcomputer Systems Lecture 15.4

Jonathan W. Valvano

 {0x21,3000,{goN,waitN,goN,waitN}},
 {0x22, 500,{goE,goE,goE,goE}},
 {0x0C,3000,{goE,goE,waitE,waitE}},
 {0x14, 500,{goN,goN,goN,goN}}};
void main(void){
STyp *Pt; // state pointer
unsigned char Input;
 Timer_Init();
 DDRT = 0xFC; // lights and sensors
 Pt = goN;
 while(1){
 PTT = Pt->Out<<2; // set lights
 Timer_Wait10ms(Pt->Time);
 Input = PTT&0x03; // read sensors
 Pt = Pt->Next[Input];
 }
}
How do we prove to the judge it works?
 Log all (input,time,output) data (like Lab 4)
 Prove it works for a machine with a few states
 then show the 1-1 mapping

 The bottom line
 FSM is good if:
 1) the FSM is easy to understand,
 2) the FSM is easy to change,
 3) the state graph defines exactly what it does,
 4) the state graph is 1-1 with the data structure,
 5) each state has the same format.
In other words, if all you see is the state graph, there should be no ambiguity about what the machine does.

