
Introduction to Embedded Microcomputer Systems Lecture 16.1

Jonathan W. Valvano

Recap
 Finite State Machines
 Pointer implementation

Overview
 Fixed-point: why, when, how
 Local variables: scope and allocation
 How these concepts apply to C
 Binding, allocation, access, deallocation

Floating point numbers
ANSI/IEEE Std 754-1985

single-precision (32-bit),
double-precision (64-bit), and
double-extended precision (80-bits).

The floating-point format
Bit 31 sign, s=0 for positive, s=1 for negative
Bits 30:23 8-bit biased binary exponent 0 ≤ e ≤ 255
Bits 22:0 24-bit mantissa, m

expressed as a binary fraction
 a binary 1 as the most significant bit is implied
 m = 1.m1m2m3...m23

s e7 e0 m1 m23

 f = (-1)s • 2e-127• m

10.1. Fixed-point numbers
Fixed point numbers
 Why? (wish to represent non-integer values)
 Next lab measures distance from 0 to 3 cm
 E.g., 1.234 cm
 When? (range is known, range is small)
 Range is 0 to 3cm
 Resolution is 0.003 cm
 How? (value = Integer*Δ)
 16-bit unsigned integer
 Δ = 10-3 decimal fixed-point
 Range becomes 0.000 to 65.535
Output an integer.

Assume integer,
n, is between 0 and 9999.

not very pretty
 OutChar($30+n/1000) ;thousand’s digit
 n = n%1000
 OutChar($30+n/100) ;hundred’s digit
 n = n%100
 OutChar($30+n/10) ;ten’s digit
 OutChar ($30+n%10) ;one’s digit
Output a fixed-point number.

Assume the integer part of the fixed point number,
n, is between 0 and 9999.

very pretty

Introduction to Embedded Microcomputer Systems Lecture 16.2

Jonathan W. Valvano

 OutChar($30+n/1000) ;thousand’s digit
 n = n%1000
 OutChar($2E) ;decimal point
 OutChar($30+n/100) ;hundred’s digit
 n = n%100
 OutChar($30+n/10) ;ten’s digit
 OutChar ($30+n%10) ;one’s digit

7.3. Local Variables
Introduction
scope => from where can this information be accessed
 private means restricted to current program segment
 public means any software can access it
allocation => when is it created, when is it destroyed
 dynamic allocation using registers or stack
 permanent allocation assigned a block of memory

A local variable (private scope, dynamic allocation)
 temporary information
 used only by one software module
 allocated, used, then deallocated
 not permanent
 implement using the stack or registers
Reasons why we place local variables on the stack include
 • dynamic allocation/release allows for reuse of memory
 • limited scope of access provides for data protection
 • only the program that created the local can access it
 • the code is reentrant.
 • the code is relocatable
 • the number of variables is more than registers

Registers are local variables

 Allocation: Register assigned to a task
 Access: Register is used
 Deallocation: Register free for other tasks

Line Program RegB RegX RegY
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Main lds #$4000
 bsr Timer_Init
 ldab #$FC
 stab DDRT
 ldx #goN
FSM ldab OUT,x
 lslb
 lslb
 stab PTT
 ldy WAIT,x
 bsr Timer_Wait10ms
 ldab PTT
 andb #$03
 lslb
 abx
 ldx NEXT,x
 bra FSM

$FC
$FC

Output
Output
Output
Output

Input
Input
Input
Input

Pt
Pt
Pt
Pt
Pt
Pt
Pt
Pt
Pt
Pt
Pt
Pt
Pt

Wait
Wait

Program 7.1. Register assignments in a finite state machine controller.

Introduction to Embedded Microcomputer Systems Lecture 16.3

Jonathan W. Valvano

Global variables in C
• Defined outside of the functions
• Exist forever in RAM
• Public scope (accessed anywhere)
• Initialized at startup

 Initialized to zero if not specified
 Can define explicit initialization

short Data; // can be accessed by any program
 // permanent allocation
 // initialized to zero
short Count=10; // can be accessed by any program
 // permanent allocation
 // initialized to ten at startup

Local variables in C

• Defined immediately after an open brace.
• Exist temporarily (in registers or on stack)

 Created
 Used
 Destroyed

• Scope restricted to that program segment.
• Can be initialized each time segment begins

 Not initialized if not specified
 Can define explicit initialization

void function(void){
 short i; // scope restricted to function
 // temporary allocation
 // not initialized
 i = 10;
 while(i){
 short j=5; // scope restricted to while loop
 // temporary allocation
 // initialized each time in loop
 i--;
 }
}

Static variables in C

• Defined in same places as globals or locals.
• Exist forever in RAM
• Scope restricted

 To programs in that file
 To program segment.

• Initialized at startup
 Initialized to zero if not specified
 Can define explicit initialization

short static Mode; // accessed only within this file
 // permanent allocation
void function(void){
 short static Life=1000; // initialized once
 // scope restricted to function
 // permanent allocation
 Life++;
 if(Life == 0) voidWarranty();
}

Introduction to Embedded Microcomputer Systems Lecture 16.4

Jonathan W. Valvano

Stack usage

Empty Stack

SP

Stack with 3 elements

SP top
next

Figure 7.1. The 9S12 stack.

The tsx and tsy instructions do not modify the stack pointer.

Stack before

 SP top

Stack after txs

SP

X
top

next next

Figure 7.2. The tsx instruction creates a stack frame pointer.

The LIFO stack has a few rules:
 1. Program segments should have an equal number of pushes and pulls;

 2. Stack accesses (PUSH or PULL) should not be performed outside the allocated area;

 3. Stack reads and writes should not be performed within the free area,
 PUSH should first decrement SP, then store the data,
 PULL should first read the data, then increment SP.

7.3. Local variables allocated on the stack
 Stack implementation of local variables has four stages:

• binding
• allocation
• access, and
• deallocation.

1. Binding is the assignment of the address (not value) to a symbolic name.
sum set 0 ;16-bit local variable

2. Allocation is the generation of memory storage for the local variable.

 pshx ;allocate sum

In this next example, the software allocates the local variable by decrementing the stack pointer. This local variable
is also uninitialized.
 des ;allocate sum
 des

If you wished to allocate the 16-bit local and initialize it to zero, you could execute.

Introduction to Embedded Microcomputer Systems Lecture 16.5

Jonathan W. Valvano

 movw #0,2,-sp

This example allocates 20 bytes for the structure big[20].

 leas -20,sp ;allocate big[20]

3. The access to a local variable is a read or write operation that occurs during execution. In the next code fragment,
the local variable sum is set to 0.

 movw #0,sum,sp

In the next code fragment, the local variable sum is incremented.
 ldd sum,sp
 addd #1
 std sum,sp ;sum=sum+1

4. Deallocation is the release of memory storage for the location variable.

 pulx ;deallocate sum

In this next example, the software deallocates the local variable by incrementing the stack pointer.
 ins
 ins ;deallocate sum

In this last example, the technique provides a mechanism for allocating large amounts of stack space.

 leas 20,sp ;deallocate big[20]

Example of local variables on stack
short calc(short in){ short num,sum;
 sum = 0; num = in;
 while(num){
 sum = sum+num;
 num = num-1;
 }
 return sum;
}

 org $4000
; calculate sum of numbers
; Input: RegD num
; Output: RegD Sum of 1,2,3,...,num
; Errors: may overflow
; 1) binding
num set 2 ;loop counter 1,2,3
sum set 0 ;running
calc
; 2) allocation
 pshd ;allocate num=in
 movw #0,2,-sp ;sum=0

; 3) access
loop ldd sum,sp
 addd num,sp

Introduction to Embedded Microcomputer Systems Lecture 16.6

Jonathan W. Valvano

 std sum,sp ;sum = sum+num
 ldd num,sp
 subd #1
 std num,sp ;num = num-1
 bne loop
 ldd sum,sp ;result

; 4) deallocate
 leas 4,sp
 rts ; return result in Reg D

main lds #$4000
 ldd #100
 jsr calc
 bra *
 org $FFFE
 fdb main
Draw a stack picture
1) in text form

 SP -> sum
 SP+2 -> num
 SP+4 -> return address

2) graphically

3) using TExaS

*******Run on TExaS**********

 The bottom line
 Scope specifies which module can access
 limiting scope reduces complexity
 Allocation specifies where data is located
 Temporary register,
 Permanent RAM (data rmb 2)
 Temporary RAM (pt = malloc(100);)
 Permanent ROM (list fcb 5,6,10,9)
 Temporary on stack
 Binding, allocation, access, deallocation

