
Introduction to Embedded Microcomputer Systems Lecture 17.1

Jonathan W. Valvano

Recap
 Local variables: scope and allocation
 How these concepts apply to C
 Binding, allocation, access, deallocation

Overview
 I/O synchronization
 LCD interface
 Implementing local variables with a stack frame
 Parameter passing

Blind Cycle Counting Synchronization
 Blind cycle counting is appropriate when the I/O delay is fixed and known. This type of synchronization is
blind because it provides no feedback from the I/O back to the computer.

Busy Waiting Synchronization
 Check busy/ready flag over and over until it is ready

Interrupt Synchronization
 Request interrupt when busy/ready flag is ready

Synchronizing with an input device

Blind Cycle

Wait a fixed time

Read data

Busy-Wait

Status

Read data

Busy

Ready

Interrupt

Fifo

Get data from Fifo

Empty

Ready

Read data

Put data in Fifo

return from interrupt

Synchronizing with an output device

Blind Cycle

Wait a fixed time

Write data

Busy-Wait

Status

Write data

Busy

Ready

Interrupt

Fifo

Put data into Fifo

Full

Idle

Write data

Get data from Fifo

return from interrupt

Fifo
Empty

8.5. Parallel Port LCD interface with the HD44780 controller

Introduction to Embedded Microcomputer Systems Lecture 17.2

Jonathan W. Valvano

Vss (ground)
Vdd (power)
Vee (contrast)
RS
R/W
E
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

1
2
3
4
5
6
7
8
9
10
11
12
13
14

+5

9S12

1 by 16 LCD display

PH0
PH1
PH2
PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7

HD44780 controller
5 by 8 bit font

10kΩ

Figure 8.13. Interface of a HD44780 LCD controller.

Show LCDOptrex.pdf datasheet
Show interface in PCB Artist
There are four types of access cycles to the HD44780 depending on RS and R/W

RS R/W Cycle
0 0 Write to Instruction Register
0 1 Read Busy Flag (bit 7)
1 0 Write data from µP to the HD44780
1 1 Read data from HD44780 to the µP

Table 8.12. Two control signals specify the type of access to the HD44780.

Command
StatusR/W=1 RS=0

R/W=0 RS=0
R/W=1 RS=1
R/W=0 RS=1 Data

Execute the initialization routine using blind-cycle

4-bit protocol write command (outCsr)
 1) E=0, RS=0
 2) 4-bit DB7,DB6,DB5,DB4 = most sign nibble of command
 3) E=1
 4) E=0 (latch 4-bits into LCD)
 5) 4-bit DB7,DB6,DB5,DB4 = least sign nibble of command
 6) E=1
 7) E=0 (latch 4-bits into LCD)
 8) blind cycle 90 us wait

4-bit protocol write ASCII data (LCD_OutChar)
 1) E=0, RS=1
 2) 4-bit DB7,DB6,DB5,DB4 = most significant nibble of data
 3) E=1
 4) E=0 (latch 4-bits into LCD)
 5) 4-bit DB7,DB6,DB5,DB4 = least significant nibble of data
 6) E=1
 7) E=0 (latch 4-bits into LCD)
 8) blind cycle 90 us wait

Data
E

RS
R/W

Data
E

RS
R/W

Introduction to Embedded Microcomputer Systems Lecture 17.3

Jonathan W. Valvano

7.3. Local Variables
Introduction
scope => from where can this information be accessed
 private means restricted to current program segment
 public means any software can access it
allocation => when is it created, when is it destroyed
 dynamic allocation using registers or stack
 permanent allocation assigned a block of memory

Example of local variables on stack
 org $4000
; calculate sum of numbers
; Input: RegD num
; Output: RegD Sum of 1,2,3,...,num
; Errors: may overflow
; 1) binding
num set 2 ;loop counter 1,2,3
sum set 0 ;16-bit accumulator
calc
; 2) allocation
 pshd ;allocate num
 movw #0,2,-sp ;sum=0
; 3) access
;Draw a stack picture
; SP -> sum
; SP+2 -> num
; SP+4 -> return address
loop ldd sum,sp
 addd num,sp
 std sum,sp ;sum = sum+num
 ldd num,sp
 subd #1
 std num,sp ;num = num-1
 bne loop
 ldd sum,sp ;result
; 4) deallocate
 leas 4,sp
 rts

Example of local variables on stack, using a stack frame
Advantage: you can use the stack for other temporary
Disadvantage: slower ties up the use of a register
 org $4000
; calculate sum of numbers
; Input: RegD num
; Output: RegD Sum of 1,2,3,...,num
; Errors: may overflow
; 1) binding
sum set -4 ;16-bit accumulator
num set -2 ;loop counter 1,2,3
calc
; 2) allocation
 pshx ;save old frame
 tsx ;create frame
 pshd ;allocate num
 movw #0,2,-sp ;sum=0
; 3) access

Introduction to Embedded Microcomputer Systems Lecture 17.4

Jonathan W. Valvano

;Draw a stack picture relative to frame
; X-4 -> sum
; X-2 -> num
; X -> oldX
; X+2 -> return address
loop ldd sum,x
 addd num,x
 std sum,x ;sum = sum+num
 ldd num,x
 subd #1
 std num,x ;num = num-1
 bne loop
 ldd sum,x ;result
; 4) deallocate
 txs
 pulx ;restore old frame
 rts

 7.5. Parameter passing
 input parameters
 data passed from calling routine into subroutine
 output parameters
 data returned from subroutine back to calling routine
 input/output parameters
 data passed from calling routine into subroutine
 data returned from subroutine back to calling routine

call by reference
 how
 a pointer to the object is passed
 why
 fast for passing lots of data
 simple to implement input/output parameters
 both subroutine and calling routine assess same data
void OutString(char *pt){
 while(*pt){
 OutChar(*pt);
 pt++;
 }
}
void OutString(char buf[]){ unsigned int i;
 i = 0;
 while(buf[i]){
 OutChar(buf[i]);
 i++;
 }
}
call by value
 how
 a copy of the data is passed
 why
 simple for small numbers of parameters
 protection of the orginal data from the subroutine
void OutChar(char letter){
 PTT = letter; // output to port
}

Introduction to Embedded Microcomputer Systems Lecture 17.5

Jonathan W. Valvano

Parameters and locals on stack, using a stack frame
Advantage: you can pass lots of data
Disadvantage: slower
Strategy:
 number of parameters?
 few: use registers
 a lot: use the stack
 size of the parameter
 1 or 2 bytes: call by value
 buffers: call by reference
 use call by reference for read/modify/write parameters

The bottom line
 Blind, Busy-wait, Interrupt synchronization
 Follow the directions when performing output to LCD
 Stack frame implementation
 allows you to use stack for other purposes
 needs dedication use RegX or Reg Y
 good on machines with a lot of registers
 Call by value makes a copy of the data
 Call by reference passes a pointer to the original

