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Recap 
 Local variables: scope and allocation 
 How these concepts apply to C 
 Binding, allocation, access, deallocation 
 
Overview 
 I/O synchronization 
 LCD interface 
 Implementing local variables with a stack frame 
 Parameter passing 

Blind Cycle Counting Synchronization 
 Blind cycle counting is appropriate when the I/O delay is fixed and known. This type of synchronization is 
blind because it provides no feedback from the I/O back to the computer. 

Busy Waiting Synchronization 
  Check busy/ready flag over and over until it is ready 

Interrupt Synchronization 
  Request interrupt when busy/ready flag is ready 
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Synchronizing with an output device
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8.5. Parallel Port LCD interface with the HD44780 controller 
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Figure 8.13. Interface of a HD44780 LCD controller. 
 
Show LCDOptrex.pdf datasheet 
Show interface in PCB Artist 
There are four types of access cycles to the HD44780 depending on RS and R/W 
 

RS R/W Cycle 
0 0 Write to Instruction Register 
0 1 Read Busy Flag (bit 7) 
1 0 Write data from µP to the HD44780 
1 1 Read data from HD44780 to the µP 

Table 8.12. Two control signals specify the type of access to the HD44780. 
 

Command
StatusR/W=1 RS=0

R/W=0 RS=0
R/W=1 RS=1
R/W=0 RS=1 Data

 
 
Execute the initialization routine using blind-cycle 

 
 

4-bit protocol write command (outCsr) 
  1) E=0, RS=0 
  2) 4-bit DB7,DB6,DB5,DB4 = most sign nibble of command 
  3) E=1 
  4) E=0       (latch 4-bits into LCD) 
  5) 4-bit DB7,DB6,DB5,DB4 = least sign nibble of command 
  6) E=1 
  7) E=0       (latch 4-bits into LCD) 
  8) blind cycle 90 us wait 

 
 
4-bit protocol write ASCII data (LCD_OutChar) 
  1) E=0, RS=1 
  2) 4-bit DB7,DB6,DB5,DB4 = most significant nibble of data 
  3) E=1 
  4) E=0       (latch 4-bits into LCD) 
  5) 4-bit DB7,DB6,DB5,DB4 = least significant nibble of data 
  6) E=1 
  7) E=0       (latch 4-bits into LCD) 
  8) blind cycle 90 us wait 
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7.3. Local Variables 
Introduction 
scope => from where can this information be accessed 
 private means restricted to current program segment 
 public means any software can access it 
allocation => when is it created, when is it destroyed 
 dynamic allocation using registers or stack 
 permanent allocation assigned a block of memory 
 
Example of local variables on stack 
     org $4000 
; calculate sum of numbers 
; Input: RegD num 
; Output: RegD Sum of 1,2,3,...,num 
; Errors: may overflow 
; 1) binding 
num  set  2   ;loop counter 1,2,3 
sum  set  0   ;16-bit accumulator 
calc 
; 2) allocation 
     pshd           ;allocate num 
     movw #0,2,-sp  ;sum=0 
; 3) access 
;Draw a stack picture 
;    SP   -> sum 
;    SP+2 -> num 
;    SP+4 -> return address 
loop ldd  sum,sp 
     addd num,sp 
     std  sum,sp  ;sum = sum+num 
     ldd  num,sp 
     subd #1 
     std  num,sp  ;num = num-1 
     bne  loop 
     ldd  sum,sp  ;result 
; 4) deallocate 
     leas 4,sp 
     rts 
 
Example of local variables on stack, using a stack frame 
Advantage: you can use the stack for other temporary 
Disadvantage: slower ties up the use of a register 
     org $4000 
; calculate sum of numbers 
; Input: RegD num 
; Output: RegD Sum of 1,2,3,...,num 
; Errors: may overflow 
; 1) binding 
sum  set  -4   ;16-bit accumulator 
num  set  -2   ;loop counter 1,2,3 
calc 
; 2) allocation 
     pshx           ;save old frame 
     tsx            ;create frame 
     pshd           ;allocate num 
     movw #0,2,-sp  ;sum=0 
; 3) access 
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;Draw a stack picture relative to frame 
;    X-4 -> sum 
;    X-2 -> num 
;    X   -> oldX 
;    X+2 -> return address 
loop ldd  sum,x 
     addd num,x 
     std  sum,x  ;sum = sum+num 
     ldd  num,x 
     subd #1 
     std  num,x  ;num = num-1 
     bne  loop 
     ldd  sum,x  ;result 
; 4) deallocate 
     txs 
     pulx        ;restore old frame 
     rts 

 

 7.5. Parameter passing 
 input parameters 
  data passed from calling routine into subroutine 
 output parameters  
  data returned from subroutine back to calling routine 
 input/output parameters 
  data passed from calling routine into subroutine 
  data returned from subroutine back to calling routine 
 
call by reference 
 how 
  a pointer to the object is passed 
 why 
  fast for passing lots of data 
  simple to implement input/output parameters 
  both subroutine and calling routine assess same data 
void OutString(char *pt){ 
  while(*pt){ 
    OutChar(*pt); 
    pt++; 
  } 
} 
void OutString(char buf[]){ unsigned int i; 
  i = 0; 
  while(buf[i]){ 
    OutChar(buf[i]); 
    i++; 
  } 
} 
call by value 
 how 
  a copy of the data is passed 
 why 
  simple for small numbers of parameters 
  protection of the orginal data from the subroutine 
void OutChar(char letter){ 
  PTT = letter;  // output to port 
} 
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Parameters and locals on stack, using a stack frame 
Advantage: you can pass lots of data 
Disadvantage: slower 
Strategy:  
 number of parameters? 
  few: use registers 
  a lot: use the stack 
 size of the parameter 
  1 or 2 bytes: call by value 
  buffers: call by reference  
 use call by reference for read/modify/write parameters 
  
The bottom line 
 Blind, Busy-wait, Interrupt synchronization 
 Follow the directions when performing output to LCD 
 Stack frame implementation  
  allows you to use stack for other purposes 
  needs dedication use RegX or Reg Y 
  good on machines with a lot of registers 
 Call by value makes a copy of the data 
 Call by reference passes a pointer to the original 
 


