Recap
Output compare interrupts
Metrowerks Codewarrior

Overview
Analog to Digital Convertor
Transducer: mechanical, electrical
Using output compare interrupts to establish sampling

Range(volts) = Precision(alternatives) • Resolution(volts)

Figure 11.1. An analog signal is represented in the digital domain as discrete samples.

10-bit Analog to digital Converter
Analog input 0 ≤ \(V_{in} \) ≤ +5
Digital output 0 ≤ \(ATD0DR0 \) ≤ 1023
Digital Output is about \(1024*V_{in}/5 \)
orDigital Output is about \(1023*V_{in}/5 \)

Figure 11.2. Input/output functions of a DAC and an ADC.

8-bit Analog to digital Converter
Analog input 0 ≤ \(V_{in} \) ≤ +5
Digital output 0 ≤ \(ATD0DR0 \) ≤ 255
Digital Output is about \(256*V_{in}/5 \)
orDigital Output is about \(255*V_{in}/5 \)

Find the 16 analog inputs on the 9S12DG128

See Figure 4.18. Block diagram of a Freescale 9S12DP512.
9S12DG128 has less RAM/ROM and CAN ports

\(ATD0CTL2=\$80 \); set bit 7 to enable ADC

Jonathan W. Valvano
\textbf{ATD0CTL3=\$08 ; sequence length=1}

\textbf{ATD0CTL4} bit 7=0 for 10-bit, =1 for 8-bit ADC

Bits 4-0 internal clock (how fast the ADC runs)

Let \(m \) be the bottom 5 bits of \textbf{ATD0CTL4}

Internal clock is \(\frac{1}{2}(m+1) \)

Internal clock can be between 500kHz and 2 MHz

At 24 MHz

2 MHz make \(\text{ATD0CTL4}=\$85 \); \(m=5 \) (7us)

1 MHz make \(\text{ATD0CTL4}=\$8B \); \(m=11 \) (14us)

\textbf{ATD0CTL5} write channel number to start ADC

- channel number \$80 to \$87

\textbf{ATD0STAT} bit 7 SCF

- cleared by write to \textbf{ATD0CTL5}
- set when ADC finished

\textbf{ATD0DR0} first 10-bit ADC result

- precision 10-bit, 1024 alternatives
- range 0 to +5V
- resolution \((5-0)/1024 = 5 \text{ mV} \)

\begin{tabular}{ccc}
 Analog Input (V) & \%0000000000 & \$000 \ 0 \\
 0.000 & \%0000000000 & \$000 \ 0 \\
 0.005 & \%0000000001 & \$001 \ 1 \\
 2.500 & \%1000000000 & \$200 \ 512 \\
 3.750 & \%1100000000 & \$300 \ 768 \\
 5.000 & \%1111111111 & \$3FF \ 1023 \\
\end{tabular}

Table 11.6. \textbf{Straight binary} format used.

\textbf{ATD0DR0} first 8-bit ADC result

- precision 8-bit, 256 alternatives
- range 0 to +5V
- resolution \((5-0)/256 = 19.5 \text{ mV} \)

\begin{tabular}{ccc}
 Analog Input (V) & \%00000000 & \$00 \ 0 \\
 0.00 & \%00000000 & \$00 \ 0 \\
 0.02 & \%00000001 & \$01 \ 1 \\
 2.50 & \%10000000 & \$80 \ 128 \\
 3.75 & \%11000000 & \$C0 \ 192 \\
 5.00 & \%11111111 & \$FF \ 255 \\
\end{tabular}

Table 11.6. \textbf{Straight binary} format used.

\textbf{Lab 7 is real-time data acquisition system}

Jonathan W. Valvano
Lab 7: Design a position meter

Hardware

Transducer

Electronics

ADC

Software

ADC device driver

Timer routines

Output compare interrupts

LCD driver

Measurement system

How fast to update

Fixed-point number system

Algorithm to convert ADC into position

A data flow graph is one of the first design steps

A transducer converts position into resistance

Solder wires to pins 1,2,3

Glue transducer to a solid

Position metric ruler (for calibration and testing)

Create a hair-line cursor

Question: what is \(R_{12} + R_{23} \) at all times?

Question: what are \(R_{12} \) and \(R_{23} \) when cursor is at 1cm?

An electrical circuit converts resistance in to a voltage

Question: what is \(V_{in} \) at 1cm?

Question: what is \(ATD0DR0 \) at 1cm?

Question: what do you want to display on the LCD at 1cm?

1) run Lab 7 starter file, first main program, write ADC

Jonathan W. Valvano
2) see ADC device driver
3) show **ADC_Init**
 - Turns it on
 - Sets it to 10-bit mode
4) show **ADC_In**
 - write channel number to **ATD0CTL5**
 - wait for SCF flag in **ATD0STAT**
 - read 10-bit result from **ATD0DR0**
5) show **Data**
 - complexity abstraction (what we want to do)
 - divide a complex problem into simple subcomponents
 - functional abstraction (how we do it)
 - divide a problem into modules
 - grouped by function
 - draw a data flow graph

Run solution to Lab 7, show how to prove real time DAS
start ADC at a regular rate (every 100ms)
measure the jitter

\[
100\text{ms-}\delta t < t_n - t_{n-1} < 100\text{ms+}\delta t
\]

![Graph showing calibration](image)

Lab 7
Sample ADC every 0.1s
Map (Data is 0 to 1023) into (Position is 0000 to +1500)
Option A) use a linear function
 - Position = \((\text{Constant1} \times \text{Sample})/\text{Constant2} + \text{Constant3}\)
 - Position = \((65536 \times \text{Sample})/\text{Constant4} + \text{Constant3}\)
Option B) Use a paired calibration table \((S[i], P[i])\)
 - \(S[i]\) are ADC samples measured at corresponding positions \(P[i]\)
 - Given sample, find \(i\) such that \(S[i] \leq \text{sample} < S[i+1]\)
 - Use linear interpolation (look up `etbl` in TExaS help)
 - position = \(P[i] + ((\text{sample} - S[i]) \times (P[i+1] - P[i]))/(S[i+1] - S[i])\)
Option C) Create a 256-entry calibration table \((P[ATD0DR0])\)
Fixed-Point output (using Lab 6 code)
123 is displayed a “1.23 cm”

The bottom line
ADC converts analog to digital
Controlling time is important

Jonathan W. Valvano