
Introduction to Embedded Microcomputer Systems Lecture 25.1

Jonathan W. Valvano

Recap
 ADC
 Successive approximation, precision, resolution
 Busy-wait synchronization
 Nyquist Theorem
 Must sample ADC at a regular rate, fs
 If signal frequencies exist fmin to fmax, make fs>2fmax
 How OC interrupts create a sampling rate
 ISR execution speed short compared to period
 Use of mailbox to pass data
 Resolution is smallest change that can be distiguished
 Accuracy is difference between truth and measured

Overview
 Device driver
 Serial communication; what does the frame look like
 SCI shift register versus SCI data register
 How RDRF is set; how RDRF is cleared
 How TDRE is set; how TDRE is cleared

A device driver is a collection of software functions that allow higher level software to utilize an I/O device.

Collection of public methods (subroutines)
SCI1_Init
SCI1_InChar
SCI1_OutChar
Collection of private objects (subroutines, globals, I/O ports)
SCI1CR2
SCI1BD
SCI1SR1
SCI1DRL
complexity abstraction
 divide a complex problem into simple subcomponents
functional abstraction
 divide a problem into modules
 grouped by function

8.2. Serial Communications Interface, SCI

baud rate total number of bits transmitted per second

M, selects 8-bit (M=0) or 9-bit (M=1) data frames.

 A frame is the smallest complete unit of serial transmission.

bandwidth useful information transmitted per second.

5V
0Vb0 b1 b2 b3 b4 b5 b6serial port b7

one frame

start stop

Figure 8.1. A serial data frame with M=0.

Introduction to Embedded Microcomputer Systems Lecture 25.2

Jonathan W. Valvano

16

2
6

15

1

3
4

5
11 14

+
-

+
-

+-+
-

+
-

1312

0.2μF

0.1μF 0.1μF

0.1μF

0.1μF

+5V

MAX232A

TxD

RxD

PS1

PS0

Ground

9S12DP512

SCI0 EIA-574
Pin 3

Pin 2

Pin 5

DTE

TxD

RxD

SG

TxD 11 14

1312

MAX232A

RxD

PS3

PS2

Ground

9S12DP512

SCI1
TxD

RxD

SG

TxD1114

13 12

MAX232A

RxD

PS3

PS2

Ground

9S12DP512

SCI1
TxD

RxD

SG

Transmitting in asynchronous mode (Lab 8 uses SCI1)

SCI1DRLwrite data

1 0
stop startshift

clock data TxD
7 6 5 4 3 2 1 0 9S12DP512

PS3

transmit data register

at baud
rate

Figure 8.3. Data and shift registers implement the serial transmission.

The software writes to SCI1DRL, then
 8 bits of data are moved to the shift register
 start and stop bits are added
 shifts in 10 bits of data one at a time on TxD line
 shift one bit per bit time (=1/baudRate)

Receiving in asynchronous mode (Lab 8 uses SCI1)

SCI1DRLread data

1 0
stop start

shift
clock data RxD

7 6 5 4 3 2 1 0

receive data register

9S12DP512

PS2at baud
rate

Figure 8.4. Data register shift registers implement the receive serial interface.

The receiver waits for the 1 to 0 edge signifying a start bit, then
 shifts in 10 bits of data one at a time from RxD line
 shift one bit per bit time (=1/baudRate)
 start and stop bits are removed
 checked for noise and framing errors
 8 bits of data are loaded into the SCI1DRL

There are TWO SCI1DRL at the same address!
 Write cycles go to transmitter to be sent
 Read cycles come from receiver which were received
 Can’t look at SCI1DRL in the debugger, because
 a) Which one do you see?
 b) Debugger takes your data

8.2.4. 9S12 SCI Details

address msb lsb Name
$00D0 - - - 12 11 10 9 8 7 6 5 4 3 2 1 0 SCI1BD

Introduction to Embedded Microcomputer Systems Lecture 25.3

Jonathan W. Valvano

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$00D2 LOOPS SWAI RSRC M WAKE ILT PE PT SCI1CR1
$00D3 TIE TCIE RIE ILIE TE RE RWU SBK SCI1CR2
$00D4 TDRE TC RDRF IDLE OR NF FE PF SCI1SR1
$00D5 0 0 0 0 0 BRK13 TXDIR RAF SCI1SR2
$00D6 R8 T8 0 0 0 0 0 0 SCI1DRH
$00D7 R7T7 R6T6 R5T5 R4T4 R3T3 R2T2 R1T1 R0T0 SCI1DRL
Similar to Table 8.4. 9S12 SCI ports (SCI1).

SCI1BD

SCI Baud Rate = MCLK
(16•BR)

on 9S12DP512/9S12DG128
 MCLK = 24MHz (with PLL, in LOAD mode)
 = 8 MHz (otherwise)
BR is 13 bits

TE is the Transmitter Enable bit, and
RE is the Receiver Enable bit.

TDRE is the Transmit Data Register Empty flag.
 set by the SCI hardware if transmit data register empty
 if set, the software write next output to SCI1DRL
 cleared by two-step software sequence
 first reading SCI1SR1 with TDRE set
 then SCI1DRL write

RDRF is the Receive Data Register Full flag.
 set by hardware if a received character is ready to be read
 if set, the software read next into from SCI1DRL
 cleared by two-step software sequence
 first reading SCI1SR1 with RDRF set
 then SCI1DRL read

RIE is the Receive Interrupt Enable bit (Arm).
 set and cleared by software
 set to arm RDRF triggered interrupts
 clear to disarm RDRF triggered interrupts

TIE is the Transmit Interrupt Enable bit (Arm).
 set and cleared by software
 set to arm TDRE triggered interrupts
 clear to disarm TDRE triggered interrupts

SCI1DRL register contains transmit and receive data
 these two registers exist at the same I/O port address
 Reads access the read-only receive data register (RDR)
 Writes access the write-only transmit data register (TDR)

 Busy-waiting, gadfly, or polling are three equivalent names
 software continuously checks the hardware status waiting for it to be ready.
SCI I/O Programming.
//SCI1BD is 13 bits, BR

Introduction to Embedded Microcomputer Systems Lecture 25.4

Jonathan W. Valvano

//baud rate (bps) = 8000000/16/BR (38461.5)
// initialize SCI, assuming 8MHz E clock
void SCI1_Init(void){
 SCI1BD = 13; // 38400 bits/sec
 SCI1CR2 = 0x0C; // enable
}

OutChar

TDREBusy

Write to SCI1DRL

Idle

rts

#define TDRE 0x80
// Wait for buffer to be empty,
// then output
void SCI1_OutChar(char data){
 while((SCI1SR1&TDRE) == 0){};
 SCI1DRL = data;
}

Program 8.1. Assembly functions that implement serial I/O.

InChar

RDRFBusy

Read from SCI1DRL

Done

rts

#define RDRF 0x20
// Wait for new input,
// then return ASCII code
char SCI1_InChar(void){
 while((SCI1SR1&RDRF) == 0){};
 return(SCI1DRL);
}

Profile is a debugging tool to measure
 Where software is executing?
 When does it execute?

Open Tut3 in TExaS,
 show SCI functions
 profile SCI_OutChar, what percentage of time is spent waiting for the SCI?
 how do we recover this lost time waiting?
PTT equ $0240
DDRT equ $0242
 bset DDRT,#$01
 bclr PTT,#$01
 bset PTT,#$01
 bclr PTT,#$01

The bottom line
 Serial transmission is one bit at a time
 Baud rate is the total number of bits/sec
 Bandwidth is the information transfer rate
 Frame is 10 bits: Start,0,1,2,3,4,5,6,7,Stop
 There are two shift registers and two data registers
 Know RDRF and TDRE
 What sets these bits?
 How are the bits cleared.

