
Lab 10 is TRobots competition
Use Version 1.85 (make sure it is 2012 version)
All in C, Metrowerks Project

Set up TRobot

-Download Trobots1_85.zip and unzip
 Give it a simple path: D:\Trobots1_85
-Trobot.exe is the game engine (try it)
-Folder S19 contains runtime files
 sx files: object code to run, z3.sx c0.sx
-Trobot.ini configuration
-logFile.txt results of simulation
-Folder BattleS19 contains lots of battle buddies
 Move them into the S19 folder when you want a battle
-Folder Lab10 is THE starter project
 Do not make your own project

Run TRobot
-Open Starter project and observe Watch variables
 Execute Project->Make (F7)
-Open Folder bin and see z3.sx just created
-Start TExaS double-clicking Texas.uc
 Tile windows, import z3.sx and run
 Compare Watch variables with C code
-Copy from bin to S19 folder
-Double click Trobot.exe to launch game
 Compare Watch variables with C code
 Notice the same tank motion in both TExaS and game

Configure TRobot
-Edit the CopyMe batch file in bin folder
-Edit Trobot.ini so your tank is the player

This will allow your program to breakpoint
Player=0 means A0, and Player=103 means Z3

-Configure this project for your tank (do this once)
 Edit->HCS12SerialMonitorSettings
 Click Linker for HC12
 Place tank name in Application Filename
 E.g., change z3.abs to a0.abs

TExaS Design Cycle
-Use TExaS to test PTT outputs to track motors
 No ADC, no turret,
 SCI will output, but no scoring
-Edit C code in Metrowerks Project
 Execute Project->Make (F7)
-Configure TExaS once
 Mode->OpenS19Mode add your C files
-In TExaS, import z3.sx and run
 Watch variables in Mem3800
 All the usual debugging

TRobot Design Cycle

-Add battle buddies into the S19 folder
 c0.sx just sits there (you can make duplicates)
 Files from S19TestFiles will fire back
-Edit C code in Metrowerks Project
 Execute Project->Make (F7)
 asm stop adds a breakpoint
-Double-click CopyMe to bin folder
-Launch Trobot.exe
 Observe position, registers, Watch variables
 <esc> <Enter> <Enter> stops the game

Stepper motor output sequence

• Full-step sequence = 5,6,10,9,...
• Half-step sequence = 5,4,6,2,10,8,9,1,...
• Forward stepping causes the motor to spin forward

– Full-step sequence = 5,6,10,9,...
– Half-step sequence = 5,4,6,2,10,8,9,1,...

• Backward stepping causes the motor to spin backward

– Full-step backward sequence = 9,10,6,5,...
– Half-step backward sequence = 1,9,8,10,2,6,4,5,..

Command

Left track

Right track


 ()

x (m)
PM7=0

x (m)
PM7=1

Robot motion

(F,F) full-step forward full-step forward 0 0.5 0.75 forward
(f,f) full-step backward full-step backward 0 -0.5 -0.75 backward
(F,f) full-step forward full-step backward -6 0 0 turn CW
(f,F) full-step backward full-step forward 6 0 0 CCW

Table 3. These four full-step commands are sufficient to move the robot.

Possible data structures

$05 $06 $0A $09$50 $60 $A0 $90

Only some arrows shown

$55 $66 $AA $99

$56 $6A $A9 $95

$5A $69 $A5 $96

$59 $65 $A6 $9A

Firing cannon
• The offensive weapon is the cannon, which is mounted on a rotating turret. The cannon has a

range of 255 meters.
• Missiles are fired in the direction of the turret. Sending a frame out the serial port fires a missile.

The data value sent determines the firing range in meters.
• There are an unlimited number of missiles that can be fired, but because of the serial baud rate,

there is a maximum rate at which the cannon can be fired. (do not spin on TDRE!!)
• Since the turret can rotate independently from the robot direction, it can fire any direction,

regardless of robot heading.

The scanner is a ranging device in three sectors

PM5 PM4 Resolution Left Scanner Front Scanner Right Scanner
0 0 5o +7.5o to +2.5o +2.5o to -2.5o -7.5o to -2.5o
0 1 10o +15o to +5o +5o to -5o -5o to -15o
1 0 30o +45o to +15o +15o to -15o -15o to -45o
1 1 120o +180o to +60o +60o to -60o -60o to -180o

Table 10.1. You can set dynamically set the scanner sensing resolution.

30o

f ro nt

left right

120o

f ro nt

left right

10o

front

left right

5o

front

left rig ht

Figure 10.4. There are four possible sensing resolution for the scanner. The front direction of the scanner
is set by PTP. The scanner direction is relative to the tank (not the turret)

Robot motion

• There are three stepper motors that control the robot. One stepper motor controls the left track, and
a second stepper motor controls the right track. A third stepper motor rotates the gun turret.

• The smallest distance that the robot can be moved is 1 meter. The smallest angle that the robot can
rotate is 1.5o

• It takes 36 (F,f) commands to rotate the turret a complete 360o

Summary of Outputs
• Two Stepper Motors Control Robot Motion

– PT7-PT4 Right Track Stepper Motor
– PT3-PT0 Left Track Stepper Motor
– PM7 Track Stepper Motor gearbox

(1 for fast, 0 for slow).
You may not fire the missile in fast mode

It takes 10 bit times between a write to SCI0DRL and the eventual firing. PM7 must be low for this entire
time.

• Sensor Resolution
– PM5-PM4 00,01,10,11 is 5, 10, 30, 120 degrees respectively

Sensor Angle
 PP7-PP0 Relative angle of the sensor to the tank, 0 to 255
 0 means sensor is pointing in direction of tank (not turret)
 64 means sensor pointing to tank’s left
 128 means sensor pointing behind the tank
 192 means sensor pointing to tank’s right

 96 64 32
 \ | /
 \ | /
 128 --- x --- 0 Tank pointing this way 
 / | \
 / | \
 160 192 224
Figure 10.11. Sensor directions are defined relative to tank .

• Gun Control
– PM3-PM0 Gun Turret Direction Stepper Motor
– PS1 serial port, send a serial output frame to shoot a missile
– baud rate, 1 start, 8-bit data, 1 stop frame protocol
– 8-bit data specifies the range 0 to 255, resolution to-be-determined

Health damage

• 1% - collision caused by another robot running into you.
• 5% - collision into another robot or into a wall.
• 5% - a missile hitting your robot.
• 10% - a software bug or illegal stepper output.

Scoring

• 20 point bonus when one of your missiles hits other robot
• 1 point penalty for launching a missile
• 5 point penalty when your robot is hit by a missile
• 5 point penalty when your robot has a collision.
• A robot-robot collision causes both robots to loose points, but the robot initiating contact also

looses health

TRobot.ini you can change
Player=2; // Tank C0
StartX=128; // starting X position 0 to 1023
StartY=256; // starting Y position 0 to 1023
StartDir=512; // starting tank direction, 256=90deg
StartTurret=256; // starting turret direction, 256=90deg
Camera=4; // 5=panoramic, 4=manual, 2=orbit, 0=1st person
ShowX=1;
ShowY=1;
ShowDir=1;
ShowTurret=1;
ShowLeft=0;
ShowCenter=1;
ShowRight=0;
ShowHealth=1;
ShowPC=1;
ShowRegX=1;
ShowRegY=1;
Show3800=1;
Show3802=1;
Show3804=1;
Show3806=1;
ShowScore=1;
BigFont=0; // 0 is little, 1 for large
PauseBetweenGames=0; // execute without pausing
StopWillPause=1; // stop will pause for the Player Tank
CreateLogFile=1; // save results in logFile.txt

TRobot.ini you cannot change
WallBounce=0; // tanks do not bounce off walls
MissileSpeed=90; // velocity of missiles (5 to 100)
MinStepTime=400; // min bus cycles between PTT outputs
BaudRate=2400; // SCI0 rate in bits/sec
KillBonus=50; // bonus points for fatal shot
LiveBonus=100; // bonus points for staying alive

Hot keys for TRobot simulation
Esc Menu
Space Pause/Resume
Arrow keys Camera Position
PageUp PageDown Camera Angle
F1 Help
F5 Change Screen Resolution
F6 Screenshot
F7 Toggle camera mode
F8 Switch to next player
F12 Toggle sound/music
F11 Abort this run, and start another run
F10 Exit

The grading scale for the TRobot Lab
110 >75% scoring rank and software has good structure and style.
100 50-75% scoring rank and software has good structure and style.
90 50-100% scoring rank and software has poor style.
85 25-50% scoring rank and software has good structure and style.
75 25-50% scoring rank and software has poor style.
75 0-25% scoring rank and software has good structure and style.
50 0-25% scoring rank and software has poor style.

 *If you don’t have significant/good code then irrespective of your rank you may get as low as 0
points for lab 10
Schedule of Events, Spring 2012

• Program submission. By Wednesday 5/2 2pm: Assume you are team X1. You must name your
project X1 so it creates X1.sx files when it compiles. You must create one zip file with the entire
Metrowerks project, with a name that includes both EIDs. E.g., ABC123_DEF456.zip, where
ABC123 and DEF456 are the UT EIDs of two students. Upload ABC123_DEF456.zip to the
Blackboard account of both students. Test the process by emailing the zip file to your partner,
unzipping it on a different computer, compiling it, and looking to see if it creates a new X1.sx file
(if your partner can’t compile it, neither can I). I will post the list of tank names I successfully
compiled on BB by 11am Thursday 5/3. If you do not see your tank, bring a flash drive to class on
Thursday. Great confusion and sadness will occur if you upload two copies of your program.

• Final Contest 5/3 in class: I will host the final TRobot competition. Note: there will be about the
30 robots in the battlefield. I will run two batches. The top team, as scored by the total points of all
the runs in the final competition, will be get a prize.

Layered solution
 Low level
 Move forward, Move back, Turn 90 degrees CW
 Turn 90 degrees CCW, Turn to North
 High level
 Game algorithm
 Search for opponents, Target and fire
 Defense, Lifepacks
Feedback
 Read sensors
 (x,y) position, ADC channels 0,1
 Heading angle, ADC channel 2

