
Introduction to Embedded Microcomputer Systems Lecture 34.1

Design process
• Requirements
• Design
• Development
• Testing

Characteristics of Good Design
• Ease of understanding
• Ease of implementation
• Ease of testing
• Ease of modification
• Satisfies requirements

Modularity and Abstraction
• Characteristic of all design methods
• Components have clearly defined inputs and outputs, and clearly stated
purpose
• Easy to examine each component separately
• Organized so system can be investigated one part at a time

client
 programmers who will use our software
 develops software that will call our functions
coworkers
 programmers who will debug and upgrade our software
 develops, tests, and modifies our software.

Hierarchical or Layered Design
– Components at one level refine those in the level above
– More abstract top levels hide detail of lower level

Modules
In C we equate module with program file
Example: TxFifo in project SCIA
1) Collection of functions
2) Data structures and data types
 Header file is the function prototypes (what it does)
 Comments written for the user or customer
 Defines the interface, data types
 How functions are called

Introduction to Embedded Microcomputer Systems Lecture 34.2

 What the functions do
 What values are returned?
 Code file is the implementation (how it works)
 Comments written for ourselves or our coworkers
 Helps to assist in debugging, and extending
 How the functions were tested?
 What assumptions were made?
 Variables should be private (make them local, or use static)

Information Hiding
• Components hide internal details and processing from one another
• Each hides a specific design decision
• Allows isolation complex parts of problem, where “decisions” need to be
made
• Possible to use different design methods within different components
• When a hidden design decision changes, only that component must be
changed
• The rest of the design remains intact

How do we hide information?
• Do not put it in header file
• Private functions
• Private variables

Modularity
 Maximize the number of modules
 Minimize the coupling between modules

Coupling
• Highly coupled = great deal of dependence between components
• Loosely coupled = some dependence but interconnections are weak
• Uncoupled = no interconnections at all

How components are coupled
• References from one component to another, such as invocation
• Bandwidth of data passed from one component to another
• Amount of control one component has over another

Types of Coupling (from bad to good)
• Content: one component directly modifies data or control flow of another

Introduction to Embedded Microcomputer Systems Lecture 34.3

• Common: Organizing data into a common store
• Control: Control flags passed as parameters between components
• Stamp: Data structures passed
• Data: Only primitive data passed

Maximize Cohesion
• Cohesion: the degree of interrelatedness of internal parts.
• All elements of the component are directed towards and essential for the
same task

Degrees of Cohesion (from bad to good)
• Coincidental: component’s parts unrelated
• Logical: logically related functions and/or data placed in same component
• Temporal: performs several functions in sequence, related only by timing
(not ordering)
• Procedural: functions grouped together to ensure mandatory ordering
• Communicational: functions operate on or produce same data set
• Sequential: output from one function is input to next
• Functional: every processing element essential to single function, and all
such essential elements contained in one component

Fans, observe the data flow graph
• Fan-in: number of components controlling a particular component
• Fan-out: number of components controlled by a given component
• Minimize components with high fan‐out
–Probably doing too much, performing more than one function
• High fan‐in should be limited to utility components
• Goal – High fan-in; low fan-out

Exceptions
• “Defensive design”: actively anticipate situations that may lead to
problems
• Make explicit what the system is not supposed to do
– Not easy to define
• Should do what it is required to do “but no more”
– Not easy to define or test
• Exception: situation counter to what system should do.

Introduction to Embedded Microcomputer Systems Lecture 34.4

Typical exceptions:
– Failure to provide service or data
– Providing wrong service or data
– Corrupting data

Exception Handling
• Retry: restore system to previous state and try again using a different
strategy
• Correct: restore to previous state, correct some aspect, and try again (same
strategy)
• Report: restore to previous state, report problem, and do not provide
service

Rewrite TxFifo.c TxFifo.h for the following cases
0) change mechanisms without changing policies
 use indices instead of pointers
 use hardware instead of software
 increase the fifo size when full
1) 8-bit to 16-bit to 32-bit
2) clone the code for additional fifos

Dynamic efficiency
Bandwidth

• calculations performed per second
• data transferred per second

Latency or response time (real time means bounded latency)
• time from a request to the time action satisfies request
• time new input ready to time data is read
• time output device is idle to time new data is written

Static efficiency
 RAM (variables) and ROM (constants, program)
 9S12DP512 14 kibibytes RAM, 512 kibibytes of EEPROM
 9S12C32, 2 KiB RAM, 32 KiB EEPROM

9S12C128, 4 KiB RAM, 128 KiB EEPROM
MSP430F2013, 128 bytes RAM, 2 KiB EEPROM

attitude

• embarrassed to deliver poorly written software

Introduction to Embedded Microcomputer Systems Lecture 34.5

• modules that are easy to change
• expect our code will be modified
• reward good behavior
• punish bad behavior
• test it now, fix it now
• plan for testing

