
EE319K Lecture 35.1

by Jonathan W. Valvano

Self-Documenting Code
Naming convention
• Names should have meaning.
• Avoid ambiguities.
• Give hints about the type.
• Use the same name to refer to the same type of object.
• Use a prefix to identify public objects.
• Use upper and lower case to specify the scope of an object.
• Use capitalization to delimit words.

An object's properties (public/private, local/global, constant/variable) are always perfectly clear

at the place where the object is defined. The importance of the naming policy is to extend that
clarity also to the places where the object is used.

type examples
constants SAFE_TO_RUN

START_OF_RAM
PORTA

local variables maxTemperature
lastCharTyped
errorCnt

private global variable MaxTemperature
LastCharTyped
ErrorCnt

public global variable DAC_MaxTemperature Key_LastCharTyped
Network_ErrorCnt

private function ClearTime
wrapPointer
InChar

public function Timer_ClearTime
RxFifo_Put
Key_InChar

Examples of names.

C language Style Guidelines
Code File Structure, the *.c file

Opening comments in the code file.
• Intended to be read by co-worker
• first line should contain the file name.
• the overall purpose of the software module,
• the names of the programmers,
• the creation (optional) and last update dates,
• the hardware/software configuration required to use the module,
• any copyright information.

EE319K Lecture 35.2

by Jonathan W. Valvano

Including .h files.

• will help us draw a call-graph
• avoid having one header file include other header files
• only those files that are absolutely necessary

#define statements.
 they will be private
 client does not need to use

struct union enum statements.
 create the necessary data structures
 they will be private.

Global variables and constants.
 If static then it will be private
 If no static then it will be public

The scope of a variable includes all the software in the system that can access it. In general, we wish to
minimize the scope of our data.

char publicGlob; // any function
static char privGlob; // this file only
void function(void){
static char veryPrivGlob; // this function only
}
Maintain order in our system by restricting direct access to our data.

Prototypes of private functions

• maintains a top-down organization
• private functions by defining them as static.
• include the parameter names with the prototypes.

For example, which of the following prototypes is easier to understand?
static void plot(short, short);
static void plot(short time, short pressure);

Implementations of the functions
 private functions should be defined as static
 sequenced in a logical manner
 highest level to lowest level, showing hierarchy
 order in which the functions will be used
 open
 input
 output
 close

EE319K Lecture 35.3

by Jonathan W. Valvano

Header File Structure, the *.h file (show sci12.h, heap.h)
There are two types of header files.
 1) has no corresponding code file (not part of a module)
 list global constants and helper macros
 I/O port addresses and calibration coefficients
 Debugging macros could be grouped together
 global in nature and do not belong to a module
 2) has a corresponding code file (part of a module)
 define the prototypes for public functions
 contains the policies (behavior or what it does)
 read by the client
 often one sells header file with compiled object code

Opening comments in header file.

• intended to be read by the client
• first line should contain the file name.
• the overall purpose of the software module,
• the names of the programmers,
• the creation (optional) and last update dates,
• the hardware/software configuration required to use module
• any copyright information.

Including .h files
 Nested includes in the header file should be avoided
#define statements.
 Public constants and macros are next.
Public or private?
 begin with everything private, and then shift if necessary
 relates to how to use the module, then public.
 relates to how it works or how it is implemented, private.
struct union enum statements.
 public data structures
 Global variables and constants
 public global variables should be avoided
Prototypes of public functions
 arrange in a meaningful order
 comments should be directed to the client
 clarify what the function does
 explain how the function can be used.
Formatting
 easier to understand,
 easier to debug, and
 easier to change.
Make the software easy to read on the screen.
 no hardcopy printouts during the development phase
 looks pretty on the computer screen.

EE319K Lecture 35.4

by Jonathan W. Valvano

 no horizontal scrolling allowed
 If we do make printouts then it will be easy to read.
 functions should understandable without vertical scrolling
Indentation should be set at 2 spaces.
 no tabs
 Local variables
 on same line as function definition, or
 in first column on next line.
Be consistent about where we put spaces.
 no space before a comma or a semicolon,
 at least one space or return after comma or semicolon.
 no space before or after open or close parentheses.
 Assignment and comparison operations
 should have a single space before and after the operation.
 we can line up the operators and values. For example
 data = 1;
 pressure = 100;
 voltage = 5;
Be consistent about where we put braces {}.
 braces cause both syntax and semantic errors
 opening brace visual clue that a new code block has started
 close brace gives visual clue that code is in different block
void main(void){ int i, j, k;
 j = 1;
 if(sub0(j)){
 for(i = 0; i < 6; i++){
 sub1(i);
 }
 k = sub2(i, j);
 }
 else{
 k = sub3();
 }
}
Bad
 if(flag)
 n = 0;
Good
 if(flag){
 n = 0;
 }
Good
 if(flag)
 {
 n = 0;
 }

EE319K Lecture 35.5

by Jonathan W. Valvano

Code Structure
Make the presentation easy to read
 the majority of a function fits on a single computer screen.
 reduce the 2-D area of our functions
 encapsulating components
 and defining them as private functions,
 combining multiple statements on a single line.
 group multiple statements on a single line
 if the collection makes sense
 we can draw a circle around the statements
 and assign a simple collective explanation
The first example has a horrific style.
void testFilter(short start, short stop, short step){ short x,y;
initFilter(); SCI_OutString("x(n) y(n)"); SCI_OutChar(CR);
for(x=start;x<=stop; x=x+step){ y=filter(x); SCI_OutUDec(x);
SCI_OutUDec(y); SCI_OutChar(CR);} }
The second example places each statement on a separate line, unnecessarily vertical.
void testFilter(short start, short stop, short step){
short x;
short y;
 initFilter();
 SCI_OutString("x(n) y(n)");
 SCI_OutChar(CR);
 for(x = start; x <= stop; x = x+step){
 y = filter(x);
 SCI_OutUDec(x);
 SCI_OutUDec(y);
 SCI_OutChar(CR);
 }
}
The last example collections are considered as a single object.
void testFilter(short start, short stop, short step){
short x, y;
 initFilter();
 SCI_OutString("x(n) y(n)"); SCI_OutChar(CR);
 for(x = start; x <= stop; x = x+step){
 y = filter(x);
 SCI_OutUDec(x); SCI_OutUDec(y); SCI_OutChar(CR);
 }
}
++ and -- should not appear in complex statements.
bad
 *(--pt) = buffer[n++];
good
 --pt;
 *(pt) = buffer[n];
 n++;

EE319K Lecture 35.6

by Jonathan W. Valvano

Comments
The beginning of every file (Show SCI12.c and heap.c)

The beginning of every function (Show SCI12.c)

• line delimiting the start of the function
• purpose
• input parameters
• output parameters, and
• special conditions that apply.
• explain the policies
• intended to be read by the client.

variable or constant definition

• clarify the usage
• specify the units
• include examples.

short V1; // voltage at node 1 in mV,
// range -5000 mV to +5000 mV

unsigned short Fs; // sampling rate in Hz

char FoundFlag; // keyword found yet?
// 0 if keyword not yet found, 1 if found

unsigned char RunMode; // system mode
// 0 means idle
// 1 means startup
// 2 means active run
// 3 means stopped

describe complex algorithms
 intended to be read by our coworkers
 assist in changing the code in the future

Examples of bad comments include:
 time++; // add one to time
 mode = 0; // set mode to zero

Good comments explain why the operation is performed, and what it means:
 time++; // elapsed time in msec
 mode = 0; // idle mode, no data is avail

