
EE345L – Lab 2: Performance Debugging
Antonius Keddis and Stephen To

02/14/07

1.0 OBJECTIVE
The lab aimed to familiarize students with dynamic and real-time performance debugging
techniques with various degrees of intrusiveness. Oscilloscopes, logic analyzers, and
software dumps were used to observe data.

Profiling also presented the detection and visualization of program activity. The program
we profiled implemented a FIFO queue with interrupts enabled.

2.0 ANALYSIS AND DISCUSSION

2.1 Theoretical Data
By observing the cycle count in the listing file, we calculated the total time to call and
execute RxFifo_Get with Equation 1.

 total time =
cycles
ondcycles

61024
sec1

1
50

•
• = 2.08µs (Equation 1)

2.2 Experimental Data

2.2.1 Observing the Debugging Profile
PT0 -> Channel 1: Interrupt
 rising edge is start of interrupt
 falling edge is end of interrrupt

PT1 -> Channel 2: Foreground
 rising edge is foreground processing
 falling edge is foreground waiting

 Figure 1: PT0 (top), PT1 (bottom)

2.2.2 Instrumentation Measuring with Independent Counter, TCNT
We observed the cycle counts for three different versions of RxFifo_Get:
without debugging (A), with debugging print (B), and with debugging dump
(C). The hyperterminal output was collected into Table 1. The results for
Version A confirm our theoretical prediction and indicate minimal
intrusiveness (that the profiling software minimally affects the execution
speed).

Version Cycles Execution Time (sec)
A 50 2.08E-06
B 16584 6.91E-04
C 84 3.50E-06

Table 1: RxFifo_Get execution times

2.2.3 Instrumentation Output Port
Instructions were placed before and after the RxFifo_Get function to “turn on”
and “turn off” PT0. Figure 2 depicts the output of PT0. However, the
measurement instruction themselves are intrusive. Notice the execution time is
slightly longer than the theoretical prediction.

Figure 3: PT0 (on during RxFifo_Get execution)

2.2.4 Profiling with a Software Dump

Two arrays were added as a software dump: one to record the time of an
activity (timeBuf[]), one to record the location of activity (placeBuf[]). Refer
to Appendix A and B for the software dump output.

Figure 3: Data flow graph of the system

2.2.5 Threading Profile using Hardware
We observed the currently running function by associating a function with a
single output port (ie PT3 for RxFifo_Put). Figure 4 illustrates the
oscilloscope output.

Figure 4: Hareware Thread Profile

2.3 Conclusions
Therefore, if we expected the execution speed to vary (ie from 5 to 20ms), we would
use a software dump to determine execution speed. We would be able to calculate
minimum, maximum, and average speed by observing the execution partern.

For large execution speeds (ie 20s), we would use hardware profiling. During 20s, the
program would have executed 20*24*106 cycles, and TCNT would be unable to
capture this quantity. Using hardware, the profiling instruction would be nearly
negligible compared to the program itself: microseconds compared to seconds.

Appendix A: timeBuf[]

Appendix B: placeBuf[]

