
 EE345L Spring 2001 Final Solution Page 1 of 2

(20) Question 1. Count the number of falling edges of an input signal connected to PH2 using interrupts.
Part a) Show the C code to initialize Port H bit 2 (PH2) to interrupt on the fall of this input signal.
#define PH2 0x04
void Init(void){
asm(" sei"); // make ritual atomic (optional)
 DDRH &= ~PH2; // PH2 is an input (friendly)
 KWIEH |= PH2; // arm PH2 (friendly)
 KWIFH = PH2; // clear flag (optional step)
 counter=0; // initialize data
asm(" cli"); // enable interrupts
}
Part b) Show the ISR that increments the counter on every fall of PH2.
#pragma interrupt_handler KeyWakupHhandler()
void KeyWakupHhandler(void){
 KWIFH = PH2; // ack, clear flag
 counter++;
}
#pragma abs_address:0xffce
void (*the_vector[])() = { KeyWakupHhandler}
Part c) The read-modify-write sequence in the above ISR is not a critical section because interrupts are disabled.

(15) Question 2. Interface a door lock/unlock solenoid to the microcomputer. The current is 5V/50Ω =100mA.
Part a) The 1N4003 diodes are used to eliminate back EMF. The ULN2074 in open-emitter mode are used to source
the 100 mA current. PNP transistors like the 2N2907, TIP30A, TIP32A, TIP42A, or TIP125 could have been used.

+5V
b c

e

+5V

b c

e

PH1

PH0

1N4003

1N4003

ULN2074

ULN2074

+5V

+5V

b c
ePH1

PH0

1N4003

1N4003

PNP

PNP
b c

e

10kΩ

10kΩ

Part b) Show the ritual that initializes the interface.
#define PH1 0x02 // lock coil
#define PH0 0x01 // unlock coil
void Init(void){
 DDRH |= PH1+PH0; // PH1 PH0 are outputs (friendly)
 TSCR = 0x80; // enable timer
 PORTH &= ~(PH1+PH0); // disable both solenoids (friendly)
}

Part c) A lock() function that energizes the lock solenoid for exactly 1 second.
void wait1Sec(void){ int j; short EndT; // TCNT at the end of the delay
 EndT = TCNT;
 for(j = 0; j < 1000; j++){
 EndT = EndT+8000; // 1 ms inner loop
 while(EndT-(short)TCNT>0); // wait until TCNT passes EndT
 }
}
void lock(void){
 PORTH |= PH1; // PH1=1 activate the lock solenoid (friendly)
 wait1Sec();
 PORTH &= ~PH1; // PH1=0 deactivate the lock solenoid (friendly)
}

Part d) An unlock() function that energizes the unlock solenoid for exactly 1 second.
void unlock(void){
 PORTH |= PH0; // PH0=1 activate the unlock solenoid (friendly)
 wait1Sec();
 PORTH &= ~PH0; // PH0=0 deactivate the unlock solenoid (friendly)
}

 EE345L Spring 2001 Final Solution Page 2 of 2

(15) Question 3. The SPI port of one 6812 is connected to the SPI port of another 6812.
Part a) Since the two shift registers are exchanged: 3) data can only flow in both directions
Part b) Give the initialization values in hexadecimal for each SPI.

Master Slave
DDRS 0xE0 0x40

SP0CR1 0x52 0x42
SP0CR2 0x00 0x00
SP0BR 0x00 0x00

 Other answers for SP0CR1 are OK as long as bits 7,3,2,0 are the same in both.
(10) Question 4. An expanded mode 6812 is initialized to have 3 stretches (the total cycle time is 500 ns).
Part a) RDR= Read Data Required = (500 - 30 , 500 + 0) = (470 , 500)
Part b) WDA = Write Data Available = (60 + 46, 500 + 20) = (106,520)
(5) Question 5. The I bit is automatically set by the hardware after the registers are pushed on the stack, but before the
ISR executes. The I bit is cleared by the rti instruction when the CCR is pulled from the stack.
(15) Question 6. Almost identical to the example in Chapter 4.
void InitFifo(void){ char SaveSP;
 asm(" tpa\n staa %SaveSP\n sei"); /* make atomic, entering critical*/
 PutI=GetI=Size=0; /* Empty when Size is 0 */
 asm(" ldaa %SaveSP\n tap"); /* end critical section */
}
int PutFifo(short data){ char SaveSP;
 if(Size == 256){
 return(0); /* Failed, fifo was full */
 }
 else{
 asm(" tpa\n staa %SaveSP\n sei"); /* make atomic, entering critical*/
 Size++;
 Fifo[PutI] = data; /* put data into fifo */
 PutI++; /* automatically wraps */
 asm(" ldaa %SaveSP\n tap"); /* end critical section */
 return(-1); /* Successful */
 }
}
int GetFifo(short *datapt){ char SaveSP;
 if(Size == 0){
 return(0); /* Empty if Size=0 */
 }
 else{
 asm(" tpa\n staa %SaveSP\n sei"); /* make atomic, entering critical*/
 *datapt = Fifo[GetI];
 Size--;
 GetI++; /* automatically wraps */
 asm(" ldaa %SaveSP\n tap"); /* end critical section */
 return(-1);
 }
}
(10) Question 7. A 7405, 74S05, 74LS05 or 7406 can sink the 8 mA current. The R=(5-2.1-0.5)/8mA=300Ω .

SS Relay

120VAC

load

µC

output
port

+5V

300Ω

7405

(10) Question 8. Acknowledgement is clearing the flag that requested the interrupt.
Part a) You can clear RDRF by reading the status register with RDRF set, followed by reading the SCI data register.
Part b) You can clear TDRE by reading the status register with TDRE set, followed by writing the SCI data register.
Part c) You can clear C7F by writing a one to its bit location (bit 7) in the TFLG1 register.
Part d) You can clear TOF by writing a one to its bit location (bit 7) in the TFLG2 register.
Part e) You can clear RTIF by writing a one to its bit location (bit 7) in the RTIFLG register.

