Jonathan W. Valvano	First:	Last:
April 9, 2003, 1:00pm-1:50pm		

(5) Operation 1	
(3) Question 1.	Choose A E
	Choose A-F
(5) Oracathar 2	
(5) Question 2.	
	Choose A-E
(5) Question 3.	
	Choose A-D
(5) Question 4.	
	Resolution=
(5) Question 5.	
	R=
(10) Question 6.	
	Maximum time=

(5) Question 7. Draw timing diagram

(2) Question 9.	
(2) Question 10.	
(2) Question 11.	
(2) Question 12.	
(2) Question 13.	
(2) Question 14.	
(2) Question 15.	
(2) Question 16.	
(2) Question 17.	
(2) Question 18.	

(2) Question 19a) RDRF	
(2) Question 19b) TDRE	
(2) Question 19c) KWIFH.2	
(2) Question 19d) TOF	
(2) Question 19e) RTI	

(20) Question 20. Show the ritual and interrupt service routine.

Jonathan W. Valvano May 8, 2003, 2-5pm

This is a closed book exam. You must put your answers on the special answer pages only. You have 3 hours, so please allocate your time accordingly. *Please read the entire quiz before starting*.

(5) Question 1. When considering the issue of critical sections, how does one categorize I/O ports?

- A) Local variables
- B) Global variables
- C) Public variables
- D) Private variables
- E) Volatile variables
- F) Nonvolatile variables

(5) Question 2. Three events must occur for a key wakeup interrupt on PJ0 to be generated:

1) Software sets the arm bit (KWIEJ bit 0)

- 2) Software enables interrupts (I=0)
- 3) Hardware sets the flag bit (KWIFJ bit 0)

Which sequence of events cause the interrupt to be generated

- A) Only the order 1,2,3
- B) Only the order 3,2,1
- C) Only the order 2,1,3
- D) Either the order 1,2,3 or 2,1,3
- E) Any order as long as all three occur

(5) Question 3. What happens if an interrupt service routine does not acknowledge or disarm?

- A) Software crashes because no more interrupts will be requested
- B) The next interrupt is lost
- C) This interrupt is lost
- D) Software crashes because the interrupts is requested over and over.

(5) Question 4. A 12-bit ADC has an input range of -10V to +10V. The sampling rate is 1000 Hz. What is the ADC resolution?

(5) Question 5. A solid-state relay can be used to switch 120 VAC power to a load. For example, the software can turn on/off an AC motor. To activate the relay (apply power to the motor), you must deliver about 2.6 V at 2 mA to the control diode. To deactivate the relay, the diode current should be zero. Choose the proper resistor value.

Num	Characteristic	0 stretch	1 stretch	2stretch	3 stretch	Units
t ₁	Cycle Time	125	250	375	500	ns
\mathbf{t}_2	Pulse Width E low	60 min	60 min	60 min	60 min	ns
t ₃	Pulse Width E high	60 min	185 min	310min	435 min	ns
t ₅	A15-A0, R/W delay	60 max	60 max	60 max	60 max	ns
t ₆	address hold time	20 min	20 min	20 min	20 min	ns
t ₁₁	Read data setup time	30 min	30 min	30 min	30 min	ns
t ₁₂	Read data hold time	0 min	0 min	0 min	0 min	ns
t ₁₃	Write data delay time	46 max	46 max	46 max	46 max	ns
t ₁₄	Write data hold time	20 min	20 min	20 min	20 min	ns
t ₁₆	R/W delay time	49 max	49 max	49 max	49 max	ns
t ₁₈	R/W hold time	20 min	20 min	20 min	20 min	ns
t ₂₆	CS delay time	60 max	60 max	60 max	60 max	ns
t ₂₈	CS hold time	10 max	10 max	10 max	10 max	ns

A ROM is interfaced to the 6812 with CSP0 connected to CE* and OE* is grounded

What is the maximum possible value for the access time (t_{ACC} and t_{CE}) that can work with 2 stretches?

from when new input data is ready

until the time the computer to reads

the data.

Term	description	min	max
t _{PHL} , t _{PLH}	Maximum Propagation Delay Clock to Q		32 ns
ts	Setup Time	20 ns	
t _H	Hold Time	5 ns	
	$\xrightarrow{D}_{\text{clock}} Q $		

(5) **Question 7.** The objective of this question is to draw a timing diagram for this D flip-flop. On the rising edge of the **Clock**, and input data on **D** is copied to the **Q** output. The timing parameters are:

Draw a timing diagram showing the **D** and **Clock** inputs together with the **Q** output. Your figure should illustrate the required timing that allows the **D** input to be properly saved into the **Q** output.

(5) Question 8. Write the C code	to implement the following equation	on using fixed-point math. X and Y		
are 8-bit signed integers. $Y =$	0.123*X + 4.56			
For questions 9-18, choose the term that best fits the definition.				
(2) Question 9. A high-speed	(2) Question 15. The interrupt	A) accuracy		
communication protocol where both	mechanism, like RDRF and TDRE,	B) asynchronous serial		
the clock and data are passed from	where multiple potential interrupt	C) atomic		
transmitter to receiver.	requests share the same interrupt	D) bandwidth		
	vector, but have separate interrupt	E) baud rate		
	flags, separate interrupt arm bits, and	F) bit time		
(2) Question 10. A communication	separate acknowledge sequences.	G) breakpoint		
system that can transfer data in two		H) buffered I/O		
directions, but only one direction at a		I) critical section		
time.	(2) Question 16. A variable or	J) desk check		
	function that can only be accessed by	K) even parity		
	functions within the same module	L) frame		
(2) Question 11. The difference	(e.g., functions within the same file).	M) friendly		
between the true value and the		N) full duplex		
measured value.		O) half-duplex		
	(2) Question 17. A debugging term	P) latency		
	that means the act of debugging itself	Q) minimally intrusive		
(2) Question 12. A debugging	has a small but not too noticeable	R) nonintrusive		
technique that uses paper and pencil to	effect on the system being tested.	S) nonvolatile		
determine in advance specific		T) periodic polling		
input/output behaviors of our software,		U) polled interrupt		
then runs the system and comparing	(2) Question 18. A multithreaded	V) precision		
actual results with expected values.	system where the direct operations of	W) private		
•	input and output occur in background	X) profile		
	interrupt service routines, the	Y) promotion		
(2) Question 13. The number of	foreground thread (main program)	Z) public		
information bits transferred per	processes inputs and generates new	AA) range		
second.	outputs, and FIFO queues are used to	BB) real-time		
	pass data between the foreground and	CC) reentrant		
	background.	DD) resolution		
(2) Question 14. The amount of time		EE) scanpoint		

FF) simplex

GG) stabilize

HH) synchronous serial

II) vectored interrupt JJ) vulnerable window (10) Question 19. Write 1 2 or 3 lines of C code that acknowledges each type of interrupt.

Part a) How do you acknowledge an SCI RDRF interrupt? (i.e., clear RDRF)

Part b) How do you acknowledge an SCI TDRE interrupt? (i.e., clear TDRE)

Part c) How do you acknowledge a key wakeup PH2 interrupt? (i.e., clear KWIFH.2)

Part d) How do you acknowledge a TOF interrupt? (i.e., clear TOF)

Part e) How do you acknowledge an RTI interrupt? (i.e., clear RTIF)

(20) Question 20. You will use my linked data structure and periodic output compare interrupts to implement this Mealy finite state machine. Each state has a time to wait in milliseconds, eight 5-bit output values, and eight next state pointers. In a Mealy machine both the outputs and the next states depend on the input. For each state your software will 1) wait the specified amount of time; 2) read the 3-bit input; 4) perform the 5-bit output that depends on the current state and the input; and 5) jumps to the next state. Which state to go to next also depends on the current state and the input.

The hardware uses all 8 bits of PORTH, in particular your software will configure PORTH bits 4,3,2,1,0 to be outputs and bits 7,6,5 to be input. I am giving you the specification of the linked data structure, and you must write the output compare initialization and the output compare interrupt service routine. You may assume the main program executes your ritual, then performs other unrelated functions. Other than initialization, YOU MAY NOT PERFORM ANY FUNCTIONS IN THE FOREGROUND. S0 is the initial state.

```
const struct State {
  unsigned short wait;
                                       // time in ms to wait
                                       // 5-bit outputs
  unsigned char out[8];
  const struct Node *next[8];};
                                      // Next if 3-bit input is 0-7
typedef const struct State StateType;
typedef StateType *StatePtr;
#define S0 &fsm[0]
#define S1 &fsm[1]
#define S2 &fsm[2]
#define S3 &fsm[3]
StateType fsm[4]={
   1000,{22,22,23,21,20,20,20,20},{S1,S1,S3,S2,S0,S0,S0,S0}},
2000,{26,26,26,26,31,25,23,23},{S1,S1,S1,S1,S2,S3,S0,S0}},
   2500, {29, 29, 30, 30, 29, 29, 30, 30}, {s3, s3, s0, s0, s3, s3, s0, s0}
  {8000,{27,28,27,28,27,28,27,28,27,28},{S1,S3,S1,S3,S1,S3,S1,S3}},
};
```