
 EE345L Spring 2003 Final Solution Page 1 of 2

Jonathan W. Valvano May 8, 2003, 2-5pm
(5) Question 1. I/O ports are considered like Global variables

(5) Question 2. Any order as long as all three occur

(5) Question 3. Software crashes because the interrupts is requested over and over.

(5) Question 4. ADC resolution=range/precision = 20V/4096 = 5 mV

(5) Question 5. R=(5-2.6-0.4V)/2mA = (2V)/2mA = 1000O

(10) Question 6. Assume an expanded mode 6812 is initialized to have 2 stretches.
The chip select CSP0 becomes 0 and the address becomes valid at 60 ns. The data becomes valid tACC later. Adding these
two together yields the time, 60+tACC, when the data first becomes available. The data is required 30 ns before the end of
the cycle. With three stretches the cycle time is 375ns. So data is required at 345ns. The maximum allowable value for
tACC
 60+tACC < 345 ns
or tACC < 285 ns

(5) Question 7. The objective of this question is to draw a timing diagram for this D flip-flop.

clock

D

Q

20ns 5ns

32ns

(5) Question 8. First multiply numerator and denominator by 1000 to remove floating point,
 Y = (123*X)/1000 + 4560/1000
then perform the division last (overflow can not occur)
 Y = (123*X + 4560)/1000;

(2) Question 9. A high speed communication protocol where
both the clock and data are passed from transmitter to
receiver.
HH) synchronous serial
(2) Question 10. A communication system that can transfer
data in two directions, but only one direction at a time.
O) half-duplex
(2) Question 11. The difference between the true value and
the measured value.
A) accuracy
(2) Question 12. A debugging technique that uses paper and
pencil to determine in advance specific input/output behaviors
of our software, then runs the system and comparing actual
results with expected values.
J) desk check
(2) Question 13. The number of information bits transferred
per second.
D) bandwidth
(2) Question 14. The amount of time from when new input
data is ready until the time the computer to reads the data.
P) latency

(2) Question 15. The interrupt mechanism, like RDRF
and TDRE, where multiple potential interrupt requests
share the same interrupt vector, but have separate
interrupt flags, separate interrupt arm bits, and separate
acknowledge sequences.
U) polled interrupt
(2) Question 16. A variable or function that can only
be accessed by functions within the same module (e.g.,
functions within the same file).
W) private
(2) Question 17. A debugging term that means the act
of debugging itself has a small but not too noticeable
effect on the system being tested.
Q) minimally intrusive
(2) Question 18. A multithreaded system where the
direct operations of input and output occur in
background interrupt service routines, the foreground
thread (main program) processes inputs and generates
new outputs, and FIFO queues are used to pass data
between the foreground and background.
H) buffered I/O

 EE345L Spring 2003 Final Solution Page 2 of 2

(10) Question 19. Write 1 2 or 3 lines of C code that acknowledges each type of interrupt.
Part a) Clearing RDRF has two steps
 if(SC0SR1&0x20) // read status with RDRF set
 data = SC0DRL; // read serial data register
Part b) Clearing TDRE has two steps
 if(SC0SR1&0x80) // read status with TDRE set
 SC0DRL = data; // write serial data register
Part c) Clear KWIFH.2, by writing a one to the flag
 KWIFH = 0x04; // clear flag
Part d) Clear TOF by writing a one to the flag
 TFLG2 = 0x80; // Acknowledge by clearing TOF
Part e) Clear RTIF by writing a one to the flag
 RTIFLG = 0x80; // Acknowledge by clearing RTIF
(20) Question 20. Linked data structure and output compare interrupts to implement this Mealy finite state machine.
StatePtr = pt; // current state
unsigned short count; // 1 ms counter used to create time delays
void Initialization(void){
 asm(" sei"); // make atomic
 TIOS |= 0x80; // PT7 is output compare
 TSCR = 0x80; // enable TCNT
 TMSK2= 0x33; // 1us clock
 pt = S0; // initial state
 DDRH = 0x3F; // PH4,3,2,1,0 outputs, PH7,6,5 inputs
 count = pt->wait; // time to wait in initial state
 TFLG1 = 0x80; // Clear C7F
 TMSK1 |= 0x80; // Arm output compare 7
 asm(" cli");
}
#pragma interrupt_handler TC7handler()
void TC7handler(void){ unsigned char input;
 TC7 = TC7+1000; // interrupts every 1ms
 if(--count == 0){
 input = PORTH>>5; // 0 through 7
 PORTH = pt->out[input]; // output depends on input and state
 pt = pt->next[input]; // next depends on input and state
 count = pt->wait; // time to wait in this new state
 }
 TFLG1=0x80; // ack by clearing C7F
}

