
 EE345L Spring 2004 Final Version 3 Page 1 of 8

Jonathan W. Valvano May 12, 2004, 9am-12noon
 This is a closed book exam. You must put your answers in the boxes on the answer pages. You
have 3 hours, so please allocate your time accordingly. Please read the entire quiz before starting.

(4) Question 1. Syntactically, I/O ports are public globals. In order to separate mechanisms from
policies (i.e., improve the quality of the software system), how should I/O be actually used?
 A) Local in allocation D) Private in scope
 B) Global in allocation E) Volatile
 C) Public in scope F) Nonvolatile

(4) Question 2. Step 1) the I bit in the CCR is set to one. Step 2) output compare interrupt 5 is armed.
Step 3) the TCNT matches TC5 setting C5F. Step 4) the I bit in the CCR is cleared to zero. Step 5) the
TCNT counts all the way around and matches TC5 again setting C5F. When is the first interrupt?
 A) No interrupt occurs B) After step 1
 C) After step 2 D) After step 3
 E) After step 4 F) After step 5

(4) Question 3. What happens if an interrupt service routine does not acknowledge or disarm?
 A) Software crashes because no more interrupts will be requested
 B) The next interrupt is lost
 C) This interrupt is lost
 D) Software crashes because interrupts are requested over and over.

(4) Question 4. An electromagnetic relay can be used to switch 120 VAC power to a load. For
example, the load might be an AC motor. To activate the relay (apply power to the motor), you must
deliver between 4V and 5V to the relay coil. The relay coil impedance is 50Ω in series with 1mH. To
deactivate the relay, the relay coil current should be zero. Assume VCE of the transistor is 0.5V.
Part a) Choose the proper interface circuit.

200Ω

200Ω

200Ω

coil

relay
load

120VAC

+56812

out

A

coil

relay
load

120VAC

+56812

out

B

coil

relay
load

120VAC

+56812

out

C

coil

relay
load

120VAC

+56812

out

D

coil

relay
load

120VAC

+56812

out

E

coil

relay
load

120VAC

+56812

out

F

Part b) What is the minimum ICE needed for the transistor?

 EE345L Spring 2004 Final Version 3 Page 2 of 8

(4) Question 5. An 11-bit ADC has an input range of –5V to +5V. What is the ADC resolution?

(4) Question 6. The ADC serial data output, shown in the figure below, is connected to the SPI MISO,
serial data input. The 6812 is the master and the ADC is the slave. The ADC clock input, connected to
the SPI clock output, is normally high (when idle the clock is 1). After a conversion, the ADC shifts its
new data out on the falling edge of the clock. What values of CPOL, CPHA should be used?

ADC timing

(4) Question 7. Write the C code to implement the following equation using fixed-point math. X Y
and Z are the integer parts (the variables stored in the computer) for 8-bit unsigned binary fixed-point
numbers with a resolution of 1/256. . Think about if overflow can occur. If overflow were to occur, set
the Z equal to its maximum positive value.
 Z = X*Y
(4) Question 8. There are 10 points to the IEEE Code of Ethics. What is the basic premise of the first
point of this code? Give one specific example of how this might apply to embedded systems.

(4) Question 9. An unsigned fixed-point system has a range of values from 0 to 999.99 with a
resolution of 10-2. Note: 10-2 equals 0.01. With which of the following data types should the software
variables be allocated? When more than one answer is possible choose the most space efficient type.
 A) unsigned char D) char G) float
 B) unsigned short E) short H) double
 C) unsigned long F) long

(4) Question 10. The software writes a 2 to the ATDCTL5. After the SCF flag is set, what is in the
MC68HC812A4 ADR1H or 9S12C32 ATDDR1 register?
 A) nothing D) ADC conversion result for channel 0
 B) 0x80 E) ADC conversion result for channel 1
 C) 0x00 F) ADC conversion result for channel 2

(4) Question 11. Consider the following Mealy FSM, where the initial state is A. The labels on the
arrows mean input/output. If the input were to be a constant 1, what happens?

A B C0/0

1/0

1/0

0/1

1/1
0/0

A) Eventually the system ends up in state C with the output high.
B) The system oscillates between state A and state B with the output low.
C) Eventually the system ends up in state A with the output low.
D) The system oscillates between state A and state B with the output toggling high and low.
E) The system oscillates between state B and state C with the output toggling high and low.
F) None of the above.

clock

data

 EE345L Spring 2004 Final Version 3 Page 3 of 8

(4) Question 12. The following code was used to acknowledge a timer channel 7 interrupt. Which
explanation best describes this code?
 TFLG1 |= 0x80;
A) This software only makes the C7F bit high. It is friendly.
B) This software only makes the C7F bit low. It is friendly.
C) This software will make all flag bits low in the TFLG1 register. It is not friendly.
D) This software will make all flag bits high in the TFLG1 register. It is not friendly.
E) This will cause a compile error because the software can not set flag bits in the TFLG1 register.
F) This will cause a run-time error because the software can not set flag bits in the TFLG1 register.

(4) Question 13. Consider the following C program, which is implemented on an embedded system.
Where are each of the four variables stored? For each variable specify A, B or C:
 A) Global RAM means permanently allocated at a fixed location in volatile memory.
 B) Stack RAM means temporarily allocated, used, then deallocated in volatile memory.
 C) EEPROM means permanently allocated at a fixed location in nonvolatile memory.
Please note that the variable names in this example do not follow the standard naming conventions.
const char v1=100; Part a) Where is v1 allocated?
static char v2=10; Part b) Where is v2 allocated?
char add3(const char v3){ Part c) Where is v3 allocated?
static char v4; Part d) Where is v4 allocated?
 v4 = v1+v3;
 return(v4);
}
void main(void){
 v2 = add3(v2);
}

(4) Question 14. Does the associative principle hold for signed integer addition and subtraction? In
particular do these two C calculations always achieve identical outputs? If no, give an example.
 Out1 = (A+B)-C;
 Out2 = A+(B-C);

(4) Question 15. Does the associative principle hold for signed integer multiply and divide? In
particular do these two C calculations always achieve identical outputs? If no, give an example.
 Out3 = (A*B)/C;
 Out4 = A*(B/C);

(4) Question 16. Consider the following interface between two 6812s. One 6812 is master and the
other is a slave. Assume the SPI clock frequency is 1 MHz. To communicate, the following sequence
of steps occur in this order
 1) The slave puts 8-bit data in its SPI data register
 2) The master puts 8-bit data in its SPI data register
 3) The two SPI hardware systems active transmitting the data
 4) The slave reads its SPI data register, getting the value sent by the master
 5) The master reads its SPI data register, getting the value sent by the slave

 EE345L Spring 2004 Final Version 3 Page 4 of 8

Part a) Is this communication protocol synchronous or asynchronous?
Part b) Is this communication protocol simplex, half-duplex or full-duplex?
Part c) Assuming the software runs much faster than the SPI hardware, what is the maximum
bandwidth communicated in this system, in bytes/sec.

(4) Problem 17. Consider the following TOF interrupting system with its corresponding assembly code
generated by the Metrowerks compiler. Assume at the time of the first instruction of main, there are
exactly two (2) bytes pushed on the stack. In other words, after main executes PSHD, there will be 4
bytes on the stack. Calculate the maximum number of bytes that will be pushed on the stack at any
given point as this system executes. This is all the software.

unsigned short time;
interrupt 16 void TOFhndlr(void){
 time++;
 TFLG2 = 0x80;
}

void TOFinit(void){
 time = 0;
 COPCTL = 0;
 TSCR = 0x80;
 TMSK2 = 0x85;
 TFLG2 = 0x80;
asm cli
}

short calc(short a, short b){
 return a*b;
}

void main(void){ short c;
 TOFinit();
 c = 1;
 for(;;) {
 c = calc(c,time);
 }
}

TOFhndlr:

LDX time
INX
STX time
LDAB #128
STAB TFLG2
RTI

TOFinit:
CLRB
CLRA
STD time
STAB COPCTL
LDAB #128
STAB TSCR
LDAB #133
STAB TMSK2
LDAB #128
STAB TFLG2
CLI
RTS

calc: PSHD
LDD 4,SP
LDY 0,SP
EMUL
PULX
RTS

main: <= start execution here
 PSHD

BSR TOFinit
LDAB #1
CLRA
STD 0,SP
PSHD
LDAA time
LDAB time+1
BSR calc
LEAS 2,SP
BRA *-10

(2) Problem 18. Are there any critical sections in the software system shown in the previous problem?
If so, state where the critical section is.

 EE345L Spring 2004 Final Version 3 Page 5 of 8

(4) Question 19. Assume an expanded mode MC68HC12A4 is initialized and running with three (3)
cycle stretches. A RAM is interfaced with 6812 CSD connected to CE* and 6812 R/W connected to
RAM WE*. To write data into this RAM, both CE* and WE* must be zero. The data will be clocked
into the RAM during a write cycle on the rise of CE* or the rise of WE* whichever occurs earlier. The
setup time for this write event is tsu, and the hold time is th.
Part a) What is the maximum possible value for the set up time, tsu? (assuming three stretches)
Part b) What is the maximum possible value for the hold time, th? (assuming three stretches)

(4) Question 20. A ROM is interfaced to MC68HC812A4 running at 8MHz. CSP0 is connected to the
ROM CE*. ta has a minimum of 100ns and a maximum of 200ns. How many stretches are needed?

CE*

Address

Data

ta

ta 0

(16) Question 21. You are asked to write two public functions: Tx_Init and Tx_Out, and a SCI
interrupt handler, which will implement SCI transmission using interrupt synchronization.
void Tx_Init(void); // initialize transmitter
short Tx_Out(char *pt); // output a null-terminated ASCII string
The serial protocol should be 2400 bits/sec baud rate, 1 start bit, 8 data bits, even parity, and 1 stop bit.
The SCI receiver will NOT be used and it should be disabled to save power. You can add one or two
private global variables, but otherwise no additional data structures are allowed. In particular, you will
not be using a Fifo queue. Instead, you will use the single buffer that is passed by reference into
Tx_Out. If the user program calls Tx_Out before the previous string has been completely transmitted
Tx_Out will return with a 1. If the user program calls Tx_Out while the transmitter is idle,
transmission will be started and Tx_Out will return with a 0. There are no backward jumps (while
do for) in any of the code you are writing. The following main program illustrates the usage of your
device driver. You may assume the ASCII string is available for the ISR for the duration of
transmission.
const char NewLine[3]={13,10,0}; // CR,LF,null
void main(void){
 Tx_Init(); // enable SCI transmitter
 while(1){
 while(Tx_Out("Hello world"));
 while(Tx_Out(NewLine));
 while(Tx_Out("That was fun, let's do it again!"));
 while(Tx_Out(NewLine));
 }
}
(2) Problem 22. How would you characterize the system implemented in the previous question?
 A) CPU bound B) Nonreentrant
 C) I/O bound D) Round Robin

 EE345L Spring 2004 Final Version 3 Page 6 of 8

The syntax PORTT/PTT means PORTT is the MC68HC812A4 name while PTT is the 9S12C32 name.
TCNT is 16-bit up counter
TCn are 16-bit input capture/output compare latch registers, n=0 to 7
PORTT/PTT is 8-bit bi-directional I/O port
DDRT is the associated direction register for Port T (0 means input, 1 means output)
TIOS is 8-bit input/output select (0 means input capture, 1 means output compare)
TSCR/TSCR1 is a timer control register
 bit 7 TEN, 1 means allow timer to function normally, 0 means disable timer including TCNT
TFLG1 is 8-bit timer flag register
 set by input capture or output compare event
 cleared by write to this register with bit set
TFLG2 is 8-bit timer flag register
 bit 7 TOF timer overflow interrupt flag, set on TCNT overflow, cleared by write to this register with bit set
TMSK1/TIE is 8-bit timer arm register
 1 means corresponding bit in TFLG1 will request an interrupt
 1 means corresponding bit in TFLG1 will not request an interrupt
TMSK2/TSCR2 is 8-bit timer control register
 bit 7 TOI timer overflow interrupt enable, 1 = interrupt on TOF, 0 = TOF interrupts will not occur
 bits 2,1,0 PR2, PR1, PR0, select rate, let n be the 3-bit number
 MC68HC812A4 TCNT frequency is 8MHz/2n, n ranges from 0 to 5
 9SC12 TCNT frequency is 24MHz/2n, n ranges from 0 to 7
TCTL3 is 8-bit timer control register, input capture mode (00=off, 01=rise, 10=fall, 11=both rise and fall)
 bits 7-6 EDG7B,EDG7A input capture 7 edge
 bits 5-4 EDG6B,EDG6A input capture 6 edge
 bits 3-2 EDG5B,EDG5A input capture 5 edge
 bits 1-0 EDG4B,EDG4A input capture 4 edge
TCTL4 is 8-bit timer control register, input capture mode (00=off, 01=rise, 10=fall, 11=both rise and fall)
 bits 7-6 EDG3B,EDG3A input capture 3 edge
 bits 5-4 EDG2B,EDG2A input capture 2 edge
 bits 3-2 EDG1B,EDG1A input capture 1 edge
 bits 1-0 EDG0B,EDG0A input capture 0 edge
MC68HC812A4 RTICTL real time interrupt control register, M clock is 8 MHz
 bit 7 RTIE real time interrupt enable, 1 means interrupt on RTIF, 0 means RTI interrupts will not occur
 bits 2,1,0 RTR2, RTR1, RTR0, select rate, let n be the 3-bit number, n ranges from 1 to 7
 interrupt period is 512µs*2n
RTIFLG/CRGFLG real time interrupt flag register
 bit 7 RTIF real time interrupt flag, set on RTI timeout, cleared by write to this register with bit set
9S12C32 CRGINT real time interrupt control register
 bit 7 RTIE real time interrupt enable, 1 means interrupt on RTIF, 0 means RTI interrupts will not occur
9S12C32 RTICTL real time interrupt control register, M clock is 4 MHz
 bits 6-4 RTR6, RTR5, RTR4, select rate, let n be the 3-bit number, n ranges from 1 to 7
 bits 3-0 RTR3, RTR2, RTR1, RTR0, select rate, let m be the 4-bit number, m ranges from 0 to 7
 interrupt period is 128µs*(m+1)*2n

SP0CR1/SPICR1 SPI control register
 bit 6 SPE — SPI System Enable
 0 = SPI internal hardware is initialized and SPI system is in a low-power disabled state.
 1 = SPI function enabled
 bit 4 MSTR — SPI Master/Slave Mode Select
 0 = Slave mode
 1 = Master mode
 bits 3-2 CPOL, CPHA — SPI Clock Polarity, Clock Phase
 bit 1 SSOE — Slave Select Output Enable

 EE345L Spring 2004 Final Version 3 Page 7 of 8

MC68HC812A4 SP0BR SPI baud rate
 bits 2,1,0 SPR2, SPR1, SPR0, select rate, let n be the 3-bit number, n ranges from 0 to 7
 SPI clock period is 4MHz/2n
9S12C32 SPIBR SPI baud rate
 bits 6-4 SPPR2, SPPR1, SPPR0, select rate, let m be the 3-bit number, m ranges from 0 to 7
 bits 2,1,0 SPR2, SPR1, SPR0, select rate, let n be the 3-bit number, n ranges from 0 to 7
 SPI clock frequency is 12MHz/(m+1)/2n

SCLK cycle # 1 2 3 4 5 6 7 8

MSB 6 5 4 3 2 1 LSB

SCLK (CPOL=0)

SCLK (CPOL=1)

MSB 6 5 4 3 2 1 LSB

 data output
sample input

CPHA=0

 data output
sample input

CPHA=1

SS to slave

SPIF set

Slave CPHA=1 transfer in progress

Slave CPHA=0 transfer in progress

Master transfer in progress

SP0SR/SPISR SPI control register
 bit 7 SPIF set after the eighth SCK cycle in a data transfer
 cleared by reading status register (with SPIF set) followed by read or write to SPI data register.
SP0DR/SPIDR is 8-bit SPI data register
ATDCTL2 ADC control register
 bit 7 ADEN, set to enable ADC
ATDCTL5 ADC control register
 bit 6, S8CM, 0 = four conversion sequence. 1 = eight conversion sequence
 bit 5, SCAN, 0 = single sequence of conversions then stop, 1 = continuous conversion
 bit 4, MULT, 0 = sequence of conversions on a single channel, 1 = sequence of conversions on multiple channels
 bits 2-0, write channel number to start ADC, channel number 0 to 7
ATDSTAT 16-bit ADC status register
 bit 15 SCF, cleared by write to ATDCTL5, set when ADC finished
MC68HC812A4 ADR0H first 8-bit ADC result
9S12C32 ATDDR0 first 10-bit ADC result
SC0DRL/SCIDRL 8 bit data serial data register
SC0BD/SCIBD is 16-bit SCI baud rate register, let n be the 16-bit number
 MC68HC812A4 Baud rate is 500kHz/n 9SC12 Baud rate is 12MHz/n
SC0CR1/SCICR1 is 8-bit SCI control register
 bit 4 M, Mode, 0 = One start, eight data, one stop bit, 1 = One start, eight data, ninth data, one stop bit
 bit 2 PE, Parity Enable, 0 = Parity is disabled, 1 = Parity is enabled.
 bit 0 PT, Parity Type, 0 = Even parity is selected, 1 = Odd parity is selected
SC0CR2/SCICR2 is 8-bit SCI control register
 bit 7 TIE, Transmit Interrupt Enable, 0 = TDRE interrupts disabled, 1 = interrupt whenever TDRE set
 bit 5 RIE, Receiver Interrupt Enable, 0 = RDRF interrupts disabled, 1 = interrupt whenever RDRF set
 bit 3 TE, Transmitter Enable, 0 = Transmitter disabled, 1 = SCI transmit logic is enabled
 bit 2 RE, Receiver Enable, 0 = Receiver disabled, 1 = Enables the SCI receive circuitry.
SC0SR1/SCISR1 is 8-bit SCI status register
 bit 7 TDRE, Transmit Data Register Empty Flag
 Set if transmit data can be written to SCDR
 Cleared by SCISR1 read with TDRE set followed by SCIDRL write.

 EE345L Spring 2004 Final Version 3 Page 8 of 8

 bit 5 RDRF, Receive Data Register Full
 set if a received character is ready to be read from SCIDRL
 Clear the RDRF flag by reading SCISR1 with RDRF set and then reading SCIDRL .
 bit 3 OR, Receiver Overrun Error Flag
 bit 2 NF, Receiver Noise Error Flag, 1 = Noise on a valid start bit, any of the data bits, or on the stop bit
 bit 1 FE, Receiver Framing Error Flag, Set when a zero is detected where a stop bit was expected.
 Clear the FE flag by reading SCISR1 with FE set and then reading SCIDRL.
 bit 0 PF, Receiver Parity Error Flag, Indicates if received data’s parity matches parity bit.

E

CS

R/W, LSTRB

A15-A0

Read
D15-D0

Write

D15-D0

0

t1
t 2 t 3

t 26
t 16

t 28

t 18

t 5

t 12

t 6

t 13 t 14

t 11

Figure 9.34. Simplified bus timing for the MC68HC812A4 in expanded mode.

Num Characteristic 0 stretch 1 stretch 2 stretch 3 stretch Units
t1 Cycle Time 125 250 375 500 ns
t2 Pulse Width E low 60 min 60 min 60 min 60 min ns
t3 Pulse Width E high 60 min 185 min 310min 435 min ns
t5 A15-A0, R/W delay 60 max 60 max 60 max 60 max ns
t6 address hold time 20 min 20 min 20 min 20 min ns
t11 Read data setup time 30 min 30 min 30 min 30 min ns
t12 Read data hold time 0 min 0 min 0 min 0 min ns
t13 Write data delay time 46 max 46 max 46 max 46 max ns
t14 Write data hold time 20 min 20 min 20 min 20 min ns
t16 R/W delay time 49 max 49 max 49 max 49 max ns
t18 R/W hold time 20 min 20 min 20 min 20 min ns
t26 CS delay time 60 max 60 max 60 max 60 max ns
t28 CS hold time 10 max 10 max 10 max 10 max ns
Table 9.13. Timing parameters for the MC68HC812A4 with an E clock of 8 MHz.
MC68HC812A4 DPAGE 8-bit page register MC68HC812A4 PPAGE 8-bit page register
interrupts vectors
0xFFD6 interrupt 20 SCI0/SCI
0xFFDE interrupt 16 timer overflow
0xFFE0 interrupt 15 timer channel 7
0xFFE2 interrupt 14 timer channel 6
0xFFE4 interrupt 13 timer channel 5
0xFFE6 interrupt 12 timer channel 4
0xFFE8 interrupt 11 timer channel 3
0xFFEA interrupt 10 timer channel 2
0xFFEC interrupt 9 timer channel 1
0xFFEE interrupt 8 timer channel 0
0xFFF0 interrupt 7 real time interrupt

