Problem 1
Give number

13 bytes

Question 8a
Choose A,B,C

It is possible for either one to be first

Question 8b
Choose A,B,C

CCR is first pushed

Question 8c
Choose A,B,C

ISR first clears C7F

Question 8d
Choose A,B,C

ISR first clears C7F

Question 9
Choose A-F

Precision (units)

9 bits, 2¾ digits, or 512 alternatives

Question 10
Choose A-F

It changes value by means other

ATDCTL3 value

S8C-S1C=0011

ATDCTL3=0x18;

DJM=1, MULT=1

ATDCTL5=0x92;

Question 11a
Choose A-F

ATDCTL3 value

PNP, Ice>500mA

D) TIP125

Question 11b
Choose A-F

ATDCTL5 value

1, 3, 7, or 9

Question 11c
Choose A-F

Specify register

1, 3, 7, or 9

Question 12
Choose A-F

Second sample

ATDDR1

Question 13
Choose A-F

D) read SCISR1, read SCIDRL

Question 14
Draw graph, delay time greater than 14, but less than 50ms

![Graph](image-url)

Question 15
Decoder with A15-A0 inputs and YourDeviceSelect as output (give chip numbers)

<table>
<thead>
<tr>
<th>Port</th>
<th>Address Range</th>
<th>Description</th>
<th>Chip Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ports</td>
<td>$5800-$58FF</td>
<td>0101,1000,xxxx,xxxxx</td>
<td>74HC04</td>
</tr>
<tr>
<td>RAM</td>
<td>$D000-$D3FF</td>
<td>1101,00xx,xxxx,xxxxx</td>
<td>74HC11</td>
</tr>
<tr>
<td>YourDevice</td>
<td>$D800-$DFFF</td>
<td>1101,1xxxx,xxxx,xxxxx</td>
<td></td>
</tr>
<tr>
<td>ROM</td>
<td>$E000-$FFFF</td>
<td>111x,xxxx,xxxx,xxxxx</td>
<td></td>
</tr>
</tbody>
</table>

YourDeviceSelect = A15 • not(A13) • A11
(4) Question 16a. Largest t_a
The rise of E occurs at 250ns, the fall of OE occurs at $250+[10,20]$, RDA starts at $250+[10,20]+t_a$. The worst case is the later RDA = $270+t_a$. RDR starts at 450ns. RDA must overlap RDR, so $270+t_a \leq 450$ns, or $t_a \leq 180$ns.

(4) Question 16b. Largest t_s
The fall of E occurs at 500ns, the rise of WE occurs at $500+[10,20]$, WDR starts at $500+[10,20]-t_s$. The worst case is the earlier WDR = $510-t_s$. WDA starts at 378ns. WDA must overlap WDR, so $378 \leq 510-t_s$, or $t_s \leq 132$ns.

(6) Question 17. Write code, $0.6 = 3/5$ and 2.0 equals $512/256$

// start with original equation $y = 0.6*x + 2.0$
// substitute definitions $I_y/256 = 3*I_x/256/5 + 2.0$, then solve
$I_y = (3*I_x)/5 + 512$;

(16) Question 18.

(6) Part a) SCI ritual
void FSM_Init(void){
Pt = SA; // initial state
SCIBDH = 0; // br=MCLK/(16*BaudRate)
SCIBDL = 26; // 9600 bits/sec
SCIACR1 = 0;
SCIACR2 = 0x2C; // RIE
/* bit value meaning
 7 0 TIE, no interrupts on TDRE
 6 0 TCIE, no interrupts on TC
 5 1 RIE, receive interrupt on RDRF
 4 0 ILIE, no interrupts on idle
 3 1 TE, enable transmitter
 2 1 RE, enable receiver
 1 0 RWU, no receiver wakeup
 0 0 SBK, no send break */
asm cli // enable interrupts
}

(10) Part b) SCI interrupt service routine
interrupt 20 void SciHandler(void){
char input;
if(SCISR1&0x20){ // check RDRF
 input = SCIDRL; // clears RDRF
 if(input=='a'){
 SCIDRL = Pt->Out[0]; // out
 Pt = Pt->Next[0]; // next
 }
 if(input=='b'){
 SCIDRL = Pt->Out[1]; // out
 Pt = Pt->Next[1]; // next
 }
}