This is the closed book section. You must put your answers in the boxes on this answer page. You have 90 min, so please allocate your time accordingly. **Please read the entire exam before starting.**

(4) **Problem 1.**
Choose A-F

(4) **Problem 2.**
Choose A-H

(4) **Question 3.**
Choose A-D

(4) **Question 4.**
Choose A-D

(4) **Question 5.**
Choose A-F

(4) **Question 6.**
ADC bits

(4) **Question 7.**
Yes or no, if no give example

(4) **Question 8.**
Yes or no, if no give example

(4) **Question 9.**
Choose A-F

(2) **Question 10.**
Choose A-Z,AA-JJ

(2) **Question 11.**
Choose A-Z,AA-JJ

(2) **Question 12.**
Choose A-Z,AA-JJ

(2) **Question 13.**
Choose A-Z,AA-JJ

(2) **Question 14.**
Choose A-Z,AA-JJ

(2) **Question 15.**
Choose A-Z,AA-JJ

(2) **Question 16.**
Choose A-Z,AA-JJ

(2) **Question 17.**
Choose A-Z,AA-JJ

(2) **Question 18.**
Choose A-Z,AA-JJ

(2) **Question 19.**
Choose A-Z,AA-JJ

(2) **Question 20.**
The basic premise of the first point of the IEEE Code of Ethics is...
(4) Question 1. Consider the following C code

```c
short add2(const short input){
    return input+2;
}
```

How would you best describe the `input` parameter?
A) Permanent allocation, private scope
B) Temporary allocation, private scope
C) Permanent allocation, public scope
D) Temporary allocation, public scope
E) 8-bit precision
F) Nonvolatile

(4) Question 2. You wish to design a system that measures the period of a digital signal. Range of periods is 1 to 2 ms, and the desired resolution is 250ns. Which interrupt mechanism would you use?
A) Output compare with a fixed period
B) Output compare with a variable period
C) Input capture on the both the rising and falling edges of the digital signal
D) Input capture on the rising edge of the digital signal
E) PWM interrupt
F) TOF interrupt when TCNT goes from 0xFFFF to 0
G) SCI interrupt when RDRF is set
H) SPI interrupt when SPIF is set

(4) Question 3. Consider the voltage when the digital signal is low. Which of these specifications must be satisfied?
A) \(V_{OL} \geq V_{IL} \), \(|I_{OL}| \geq |I_{IL}| \)
B) \(V_{OL} = V_{IL} \), \(|I_{OL}| = |I_{IL}| \)
C) \(V_{OL} \leq V_{IL} \), \(|I_{OL}| \leq |I_{IL}| \)
D) None of the above

(4) Question 4. Consider the voltage when the digital signal is high. Which of these specifications must be satisfied?
A) \(V_{OH} \geq V_{IH} \), \(|I_{OH}| \geq |I_{IH}| \)
B) \(V_{OH} = V_{IH} \), \(|I_{OH}| = |I_{IH}| \)
C) \(V_{OH} \leq V_{IH} \), \(|I_{OH}| \leq |I_{IH}| \)
D) None of the above
(4) Question 5. An electromagnetic relay can be used to switch 120 VAC power to a load. For example, the load might be an AC motor. To activate the relay (apply power to the motor), you must deliver between 4V and 5V to the relay coil. The relay coil impedance is 100Ω in series with 1mH. To deactivate the relay, the relay coil current should be zero. Assume VCE of the transistor is 0.5V. Which interface would you choose for this system. If more than one circuit works choose the best one.

![Diagrams of relay interfaces A to F]

(4) Question 6. The desired ADC range is -10V to +10V with a resolution of 0.001V. How many ADC bits are required?

(4) Question 7. Does the associative principle hold for signed integer addition and subtraction? In particular do these two C calculations always achieve identical outputs? If not, give an example.

\[
\text{Out3} = (A+B) - C;
\]
\[
\text{Out4} = A + (B-C);
\]

(4) Question 8. Does the associative principle hold for signed integer multiply and divide? In particular do these two C calculations always achieve identical outputs? If not, give an example.

\[
\text{Out1} = (A*B)/C;
\]
\[
\text{Out2} = A * (B/C);
\]

(4) Question 9. The following code was used to acknowledge a receive data register full (RDRF) interrupt. The flag RDRF is bit 5 in the SCISR1 register. Which explanation best describes this code?

\[
\text{SCISR1 |= 0x20;}
\]

A) This software only makes the RDRF bit high. It is friendly.
B) This software only makes the RDRF bit low. It is friendly.
C) This software will make all flag bits high in the SCISR1 register. It is not friendly.
D) This software will make all flag bits low in the SCISR1 register. It is not friendly.
E) This will cause a run-time crash because the software does not clear RDRF.
F) This will cause a compile error because the software can not set flag bits in the SCISR1 register.
For questions 10-19, choose the term that best fits the definition.

(2) Question 10. The amount of information transferred per second.

(2) Question 11. The amount of time from when the output is idle until the time the computer writes new data to the output device.

(2) Question 12. The interrupt mechanism, like output compare, where multiple potential interrupt requests have separate interrupt vectors, separate interrupt flags, separate interrupt arm bits, and separate acknowledge sequences.

(2) Question 13. A variable or function that can only be accessed by functions within the same module (e.g., functions within the same file).

(2) Question 14. A debugging term that means the act of debugging itself has a small but negligible effect on the system being tested.

(2) Question 15. A multithreaded system where the direct operations of input and output occur in background interrupt service routines, the foreground thread (main program) processes inputs and generates new outputs, and FIFO queues are used to pass data between the foreground and background.

(2) Question 16. A communication protocol where just the data (and not the clock) are passed from transmitter to receiver.

(2) Question 17. A communication system that can transfer data in two directions, but only one direction at a time.

(2) Question 18. You are testing a data acquisition system. Let \(y_i \) be 20 measurements performed on the system, and let \(x_i \) be the corresponding true values. What is the average difference between the \(y_i \) and \(x_i \)?

\[
\frac{1}{20} \sum |y_i - x_i|
\]

(2) Question 19. You are testing a data acquisition system. Let \(x_1 \) and \(x_2 \) be two known inputs. If the system can reliably detect when the input changes from \(x_1 \) to \(x_2 \). What is \(x_1 - x_2 \)?

A) accuracy B) asynchronous serial
C) atomic D) bandwidth
E) baud rate F) bit time
G) breakpoint H) buffered I/O
I) CPU bound J) critical section
K) even parity L) frame
M) friendly N) full duplex
O) half-duplex P) latency
Q) minimally intrusive R) nonintrusive
S) nonvolatile T) periodic polling
U) polled interrupt V) precision
W) private X) profile
Y) promotion Z) public
AA) range BB) real-time
CC) reentrant DD) resolution
EE) scanpoint FF) simplex
GG) stabilize HH) synchronous serial
II) vectored interrupt JJ) vulnerable window

(4) Question 20. There are 10 points to the IEEE Code of Ethics. See answer sheet

end of closed book section
(5) **Question 22.** An SPI system is used to interface a 12-bit DAC. The SPI frequency is 2 MHz and it takes two SPI transmissions to send one 12-bit value to the DAC. An analog waveform is created using a 2 ms periodic output compare interrupt. During each execution of the output compare ISR exactly one 12-bit value is transmitted to the DAC. What is the actual throughput in bits/sec between the SPI and the DAC?

(10) **Question 23.** Interface the following 16K ROM to a 6811 running at 2 MHz. Assume the gate delay through each 74HC digital logic gate is [5ns min, 10ns max]. The full address decoder should select addresses 4000 to $7FFF$. The ROM timing is described in the following figure.

(5) Part a) Design the interface between the ROM to the 6811. You are limited to the following digital devices (you can use more than one copy if you want)
(5) Part b) Read data required is (450,510). Calculate the worst-case Read Data Available interval for this interface and show that the timing requirements are satisfied.
(25) Problem 24. Consider a robot with two sensors and two DC motors. The goal is to design the robot so it follows the black line on the track.

![Diagram of robot and track with sensors and motors labeled](image)

(10) Part a) Each sensor gives a voltage between 2 and 3V if it is positioned over the line on the track, and the sensor gives a voltage between 3 and 4 V if it is not positioned over the line. Design a hardware/software interface between the two sensors and the 6812. Give chip numbers and resistor/capacitor values. Include both the hardware and the software interface. Give the software ritual that initializes the interface. Design a software function that returns 0 if both sensors are not on the line, 1 if just the left sensor is on the line, 2 if just the right sensor is on the line and 3 if both sensors are on the line. Style matters.
(10) **Part b**) Each motor requires $+5 \text{ V}$ at 2 A to turn. Your software needs to be able to activate or deactivate each motor independently. The interface does not need to support turning backward or to support PWM. Design a hardware/software interface between the two motors and the 6812. Give chip numbers and resistor/capacitor/diode values. Include both the hardware and the software interface. Give the software ritual that initializes the interface. Design a software function that accepts a 2-bit call by value parameter: 0 means stop both motors, 1 means activate just the left motor (causing the robot to turn right), 2 means activate just the right motor (causing the robot to turn left), 3 means activate both motors (causing the robot to move forward). *Style matters.*

\[
\begin{align*}
+5 \text{V} & \quad +12 \text{V} \\
\end{align*}
\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]