
 EE345L Spring 2007 May 12, 2007 Version 2 Solution Page 1

Jonathan W. Valvano
 This is the closed book section. You must put your answers in the boxes on this answer page.
You have 90 min, so please allocate your time accordingly. Please read the entire exam before
starting.
(4) Problem 1.
Choose A-F

B) Temp allocation,
 private scope

 (2) Question 10.
Choose A-Z,AA-JJ

D) bandwidth

(4) Problem 2.
Choose A-H

D) Input capture on
the rising edge of the
digital signal

 (2) Question 11.
Choose A-Z,AA-JJ

P) latency

(4) Question 3.
Choose A-D

D) None of the above (2) Question 12.
Choose A-Z,AA-JJ

II) vectored
interrupt

(4) Question 4.
Choose A-D

A) VOH ≥ VIH ,
 |IOH| ≥ |IIH|

 (2) Question 13.
Choose A-Z,AA-JJ

W) private

(4) Question 5.
Choose A-F

E (2) Question 14.
Choose A-Z,AA-JJ

Q) minimally
intrusive

(4) Question 6.
ADC bits

20,000 alternatives
requires 15 bits

 (2) Question 15.
Choose A-Z,AA-JJ

H) buffered I/O

(4) Question 7.
Yes or no, if no
give example

yes (2) Question 16.
Choose A-Z,AA-JJ

B) asynchronous
serial

(4) Question 8.
Yes or no, if no
give example

No,
(10*10)/20 = 5
10*(10/20) = 0

 (2) Question 17.
Choose A-Z,AA-JJ

O) half-duplex

(4) Question 9.
Choose A-F

E) This will cause a
run-time crash
because the software
does not clear RDRF

 (2) Question 18.
Choose A-Z,AA-JJ

A) accuracy

 (2) Question 19.
Choose A-Z,AA-JJ

DD) resolution

(4) Question 20. There are 10 points to the IEEE Code of Ethics. What is the basic premise of the first
point of this code? Give one specific example of how this might apply to embedded systems.
Take responsibility. When a bug or design flaw is found, make effort to fix it and to let the
consumers know of the consequences of the error.

 EE345L Spring 2007 Final Version 2 Solution Page 2

(5) Question 22. The actual throughput is 12 bits/2ms, which equals 6000 bits/sec.

(10) Question 23. Interface the following 16K ROM to a 6811 running at 2 MHz.
 Synchronized negative logic, activate PROM when R/W=1, A15=0, and A14=1
(5) Part a) Design the interface between the ROM to the 6811.
Step 1. Design the address decoder
$4000-$7FFF is 01xx,xxxx,xxxx,xxxx
For fully decoded, specify all 0s and 1s. Select = not(A15)•A14 in positive logic

Step 2. Create a status table. The status table always starts like this
Select R/W Control Signals Explanation
0 0 write cycle to another device
0 1 read cycle from another device
1 0 write cycle to our device
1 1 read cycle from our device

In this situation there is one negative-logic control signal called CE/
Select R/W CE/ Explanation
0 0 write cycle to another device
0 1 read cycle from another device
1 0 write cycle to our device
1 1 read cycle from our device

Basically in the status table you make the memory do the necessary functions. In this case we want to
turn off the device (CE/ = 1) if the cycle is accesses another device. We will also turn it off if a write
cycle occurs.
Select R/W CE/ Explanation
0 0 1 write cycle to another device
0 1 1 read cycle from another device
1 0 1 write cycle to our device
1 1 read cycle from our device

Finally, we will activate it if there is a read cycle to our device
Select R/W CE/ Explanation
0 0 1 write cycle to another device
0 1 1 read cycle from another device
1 0 1 write cycle to our device
1 1 0 read cycle from our device

Step 3. During the timing analysis we have to do two things. First, guarantee RDA overlaps RDR.
And, second we have to make sure the memory doesn’t drive the data bus during the first half of the
cycle (because the 6811 is driving the low address during the first half of the cycle. To prevent the
memory data from colliding we will only drive data out of the memory when E=1. This is called
synchronizing the read operation to E. To create a combined table, we expand the status table, adding
the E as an input. The data from the status table in entered in the positions where E=1.

 EE345L Spring 2007 Final Version 2 Solution Page 3

E Select R/W CE/ Explanation
0 0 0
1 0 0 1 write cycle to another device
0 0 1
1 0 1 1 read cycle from another device
0 0 0
1 1 0 1 write cycle to our device
0 1 1
1 1 1 0 read cycle from our device
To make the control signal high throughout the cycles when we wish to disable the memory, we place
additional ones
E Select R/W CE/ Explanation
0 0 0 1
1 0 0 1 write cycle to another device
0 0 1 1
1 0 1 1 read cycle from another device
0 0 0 1
1 1 0 1 write cycle to our device
0 1 1
1 1 1 0 read cycle from our device
To make the control signal synchronized negative logic, we place a 1,0 in those entries for the cycle
we wish to activate. See the book Figure 9.28 and Table 9.9 for the choices that can be entered into the
combined table.
E Select R/W CE/ Explanation
0 0 0 1
1 0 0 1 write cycle to another device
0 0 1 1
1 0 1 1 read cycle from another device
0 0 0 1
1 1 0 1 write cycle to our device
0 1 1 1
1 1 1 0 read cycle from our device
Step 4. Develop the logic equation for the control signal and build it with real gates

CE/ = not(A15)•A14•R/W•E

74HC2074HC04

LE
D

74HC573
Q8

8

6811
A15
A14
R/W

A13-A8

AS
AD7-AD0

CE

A13-A8

A7-A0

D7-D0

ROM

8

6

8

6

8

E

 EE345L Spring 2007 Final Version 2 Solution Page 4

(5) Part b) To show that the timing requirements are satisfied, we write equations for RDA and RDR.
The gate delay is [5ns min, 10ns max].
 RDA = (fall of CE/+[60,80], rise of CE/+10)
Because CE/ is synchronized to the E clock, the fall of CE/ will be 250+gate delay = [255,260].
Similarly, the rise of CE/ will be 500+gate delay = [505,510].
 RDA = ([255,260]+[60,80], [505,510]+10) = (340,515) choose shortest RDA interval
RDR comes from the 6811. At 2 MHz it is
 RDR = (450,510)
Notice that RDA overlaps RDR
(25) Problem 24. The goal is to design the robot so it follows the black line on the track.
(10) Part a) You could use a threshold detector (more expensive) or the ADC to interface the sensor.

9S12C32PAD1Right sensor
Vout

+5V

Left sensor
Vout

+5V
PAD0 PM0

9S12C32PM1Right sensor
Vout

+5V

Left sensor
Vout

+5V
rail to rail op amp
TLC2272 or Max492

+5

3V
20k

30k

// Initialize ADC interface with sensor
void Sensor_Init(void){
 ATDCTL2 = 0x80; // enable ADC
 ATDCTL3 = 0x10; // Sequence length = 2
 ATDCTL4 = 0x05; // 10-bit resolution
}
// 0 if both off, 1 if left on track
// 2 if right on, 3 if both on track
unsigned short Sensor_Read(void){
unsigned short result=0;
 ATDCTL5 = 0x90; // sequence PAD0, PAD1
 while((ATDSTAT1&0x02)==0){}; // CCF1
 if(ATDDR0 < 614) result = 1;
 if(ATDDR1 < 614) result |= 2;
 return result;
}

// Initialize PTM interface with sensor
void Sensor_Init(void){
 DDRM &= ~0x03; // PM1 PM0 inputs
}

// 0 if both off, 1 if left on track
// 2 if right on, 3 if both on track
unsigned short Sensor_Read(void){
 return PTM&0x03;
}

(10) Part b) Because of the 2A, I will use a MOSFET or a Darlington to switch the current. N-channel
devices are typically used to sink current (P-channel devices for sourcing current).

9S12C32 PT1

+5V Right
Motor

Left
MotorPT0

+5V

IRF540

1N914

9S12C32
PT1

+5V Right
Motor

Left
MotorPT0

+5V

TIP120

1N914

// Initialize Motor interface
void Motor_Init(void){
 DDRT |= 0x03; // PT1 PT0 outputs
}

 EE345L Spring 2007 Final Version 2 Solution Page 5

// 0 stop both,
// 1 active left (turns right)
// 2 active right (turns left),
// 3 means activate both motors (causing the robot to move forward).
void Motor_Out(unsigned char controlValue){
 PTT = (PTT&0xFC)+controlValue;
}
(5) Part c) Output=1 to turn right, output=2 to turn left. Input=1 if right side is off track, input=2 if left
side is off track. If the car is on the track go straight. If the car is off to the right, turn left. If the car is
off to the left, turn right. Run the algorithm about 10 times faster than the response time of the motors.
A finite state machine is needed to solve this problem in order to handle the case where the car
completely leaves the track (both sensors are off the track.)

WayLeft
0x03

1

3

OnTrack
0x03

OffLeft
0x01

OffRight
0x02

WayRight
0x03

3

1

0

2
2

3

0,2
0,1

2
1

3 3
1

0

0,2

Simulation of this algorithm.
 The robot car is moving clockwise around the green track. The red dots show positions the
places the robot car has traveled.

OnTrack
 fcb %11 ;move both wheels
 fdb OffLeft,OffRight,OffLeft,OnTrack
OffLeft
 fcb %01 ;move just the right wheel
 fdb WayLeft,OffRight,OffLeft,OnTrack
WayLeft
 fcb %11 ;move both wheels
 fdb OffLeft,OffRight,OffLeft,OnTrack
OffRight
 fcb %10 ;move just the left wheel
 fdb WayRight,OffRight,OffLeft,OnTrack
WayRight
 fcb %11 ;move both wheels
 fdb OffRight,OffRight,OffLeft,OnTrack

