
 EE445L Spring 2018 Final Solution Page 1

Jonathan W. Valvano
(4) Question 1. PWM

B) Provides high precision basically the precision is the PWM reload value, which is PWM
period divided by the PWM base clock period. In lab, we used a PWM base clock of 40 MHz (25ns), a
reload value of 40000, and a PWM period of 1ms. The precision is 40,000 (15 bits), because there are
40,000 different duty cycles possible.
(6) Question 2. Consider the lab 10 system used to control motor speed.
(3) Part a) PI vs I
 B) Reduces controller response time, P makes it respond faster
(3) Part b) PI vs P
 A) Reduces controller error, I reduces error
(2) Question 3. Friction, holding torque required to get it to start
(4) Question 4. Active filter
 D) Lower input impedance (it could have higher input impedance)
 E) Lower output impedance
(4) Question 5. Resistance bridge; all apply.
 A) Converts resistance to voltage
 B) Handles the offset needed because the resistance varied from Rmin to Rmax
 C) Nonlinear correction, so the output is more linear with temperature than resistance alone
 D) Allows the use of a voltage reference, so the signals are low noise
(5) Question 6. You are debugging a software FIFO queue
Part a) Set an output bit high at the start of Put, clear it at end. Set an
output bit high at the start of Get, clear it at end.
Part b) Show the logic analyzer signals
Part c) Set trigger on combination (AND) of Get high and rising edge
of Put. Alternatively, trigger on combination (AND) of Get=high and Put=high.
(5) Question 7. Clock signal transmitted across a long wire. Calculate time constant τ=100-Ω *10-nF =
102*10*10-9 = 10-6sec = 1 µs. Fastest clock speed is around (f=1/1µs =1 MHz). Any answer from 100 kHz
to 1 MHz will receive credit if students calculate time constant. Personally, I’d choose the period to be 4τ
or 5τ, 200-250 kHz. At 4-µs period, this gives you 2τ for rise and 2τ for fall. 1-e-2 = 0.86. This means
0.86*3.3V = 2.85V, which means the clock will oscillate between 0.22V and 3.08V

Slower than 250kHz, f=125 kHz, the signal looks ok. Each pulse is 4τ, 1-e-4 = 0.98. This means
0.98*3.3V = 3.24V, which means the clock will oscillate between 0.03V and 3.27V

Faster than 250kHz, f=500 kHz, the signal probably does not work Each pulse is 1τ, 1-e-1 = 0.63. This
means 0.63*3.3V = 2.09V, which means the clock will oscillate between 0.61V and 2.69V, which means
it may not go below VIL or above VIH.

time

3.3

0
0 T

PB2

T/2 3T/2

clock

time

3.3

0
0 T

PB2

T/2 3T/2

clock

Put

Get

 EE445L Spring 2018 Final Solution Page 2

(5) Question 8. ADC resolution = 20log10(1/1024) = -60.2 dBFS The signals higher than frequency 620
kHz are less than -60 dB, so sample greater than 1240 kHz.

(5) Question 9. This FIFO queue implementation with shared globals Size, GetI, PutI
(3) Part a) “no critical sections”, removes sharing
(2) Part b) “yes, adds a bug”, FIFO does not work, because there are two Size variables now

(5) Question 10. We specify data required because it is an input

(10) Question 11. Consider a battery with voltage V (in volts). The battery has S storage (in mA-hr). The
regulator has a power efficiency of E, creating a 3.3V supply for the system. To save power, the system
runs x% of the time at Irun (in mA) and sleeps (100-x)% at Isleep (in mA). The units of x are percent (0 to
100). Derive an equation for how long will this battery run the system? Show your work.
Calculate average current in system Isys = (x*Irun +(100-x)*Isleep)/100
Consider regulator V*Ibat*E = 3.3V * Isys
Solve for Ibat = (3.3V * Isys)/(V*E)
Consider storage S = Ibat*T
Solve T = S / Ibat = S / ((3.3V * Isys)/(V*E)) = S / ((3.3V *((x*Irun +(100-x)*Isleep)/100))/(V*E))

(5) Question 12. I’d answer in the negative. Being unethical will cost you your freedom (jail). Being
unethical will cost you money (lawsuits). Being unethical will cost you your reputation (lost clients).
Being unethical will cost you your soul (leads to unhappiness).

Clock

Data available

Data required

0 250 500 750 1000

100200

-5, 20kHz

-45, 480kHz

-55, 620kHz

 EE445L Spring 2018 Final Solution Page 3

(15) Problem 13. You are given an input analog signal connected to the microcontroller.
 (8) Part a) Show the global variables, and initialization function.
int32_t Voltage; // current input in mV
int32_t Previous; // input 1ms ago in mV
int32_t Derivative; // slope 1V/s = 1mV/1ms
void SysTick_Init(void){ // sample at 1000 Hz
 NVIC_ST_RELOAD_R = 79999; // any value faster than 200 Hz is ok
 NVIC_SYS_PRI3_R = (NVIC_SYS_PRI3_R&0x00FFFFFF); // priority
 NVIC_ST_CTRL_R = 0x07;
 ADC_Init();
 Voltage = Previous = (3300*ADC_In())/4096;
 Enable_Interrupts();
}

(8) Part b) Show the interrupt service routine that runs in the background, sampling the ADC, calculating
the derivative, and passing the results to the foreground. You do not write ADC_In().
void SysTick_Handler(void){ // every 1ms
 Voltage = (3300*ADC_In())/4096; // mV
 Derivative = Voltage-Previous; // mV/mS
 Previous = Voltage; // for next time
}

(10) Question 14. Design an analog amplifier
ADC range is 2V, input range is 0.05V, so need a gain of 2/0.05 = 40
Consider offset -1V < 40(V1 - V2) < 1V
Need an offset of 1.5V 0.5V < 40(V1 - V2)+1.5 < 2.5V
Use an instrumentation amp, because it is a differential amplifier needing a large input impedance
INA122 gain is 5+200k/Rg, so Rg = 200k/(40-5) = 5.71k
To get offset, connect 1.5V into pin 5 of the INA122, connect output of INA123 to ADC

(5) Question 15. Design an anti-aliasing filter. Pick a cutoff between 100 and 500 Hz (slower than signals
of interest, and faster than ½ fs. Start at 250 Hz.

first design step is to select the cutoff
 fc (Hz) 250 fill this in
 RA (kohm) 10 same as initial R

 C1A (µF) 0.09002 is 141.4/(2•π•fc)
 C2A (µF) 0.04501 is 70.7/(2•π•fc) or 0.5•C1A

Vin
Vout

C1RR

Vref

C2

10kΩ 10kΩ

141.4µF

70.7µF ()4/1

1

cffinV
outV

+
=

 EE445L Spring 2018 Final Solution Page 4

second design step is to choose convenient Capacitor values
 fc (Hz) 250 same as previous fc

 RB (kohm) 20.459 new value to match exact fc
 C1B (µF) 0.044 fill this in

 C2B (µF) 0.022 is 0.5•C1B
 third design step is to choose a convenient resistor value

 fc (Hz) 255.733 new cutoff based on these convenient values
 RC (kohm) 20.000 fill this value in

 C1C (µF) 0.044 same as C1B
 C2C (µF) 0.022 same as C2B

(10) Question 16. The goal of the problem is to design a system to measure the phase
Part a) One line modification to PWMeasure2_Init (Program 6.5) in the book.
uint32_t PW; // 24 bits, 12.5 ns units
#define PERIOD 800000 // 10ms, 12.5 ns units
void PWMeasure2_Init(void){ // TM4C123 code
 SYSCTL_RCGCTIMER_R |= 0x01; // activate timer0
 SYSCTL_RCGCGPIO_R |= 0x02; // activate port B
 Done = 0; // allow time to finish activating
 GPIO_PORTB_DIR_R &= ~0xC0; // make PB6, PB7 inputs
 GPIO_PORTB_DEN_R |= 0xC0; // enable digital PB6, PB7
 GPIO_PORTB_AFSEL_R |= 0xC0; // enable alt funct on PB6, PB7
 GPIO_PORTB_PCTL_R = (GPIO_PORTB_PCTL_R&0x00FFFFFF)+0x77000000;
 TIMER0_CTL_R &= ~0x00000101; // disable timers 0A and 0B
 TIMER0_CFG_R = 0x00000004; // configure for 16-bit timer mode
 TIMER0_TAMR_R = 0x00000007;
 TIMER0_CTL_R = (TIMER0_CTL_R&(~0x0C))+0x00; // rising edge
 TIMER0_TAILR_R = 0x0000FFFF; // start value
 TIMER0_TAPR_R = 0xFF; // activate prescale, creating 24-bit
 TIMER0_IMR_R |= 0x00000004; // enable capture match interrupt
 TIMER0_ICR_R = 0x00000004; // clear timer0A capture match flag
 TIMER0_TBMR_R = 0x00000007;
 TIMER0_CTL_R = (TIMER0_CTL_R&(~0x0C00))+0x00; // rising edge
 TIMER0_TBILR_R = 0x0000FFFF; // start value
 TIMER0_TBPR_R = 0xFF; // activate prescale, creating 24-bit
 TIMER0_IMR_R &= ~0x0700; // disable all interrupts for timer0B
 TIMER0_CTL_R |= 0x00000101; // enable timers 0A and 0B
 NVIC_PRI4_R = (NVIC_PRI4_R&0x00FFFFFF)|0x40000000; // Timer0=priority 2
 NVIC_EN0_R = 1<<19; // enable interrupt 19 in NVIC
 EnableInterrupts();
}
Part b) Interrupt service routine that measures phase. Signal the semaphore when new data is available
void Timer0A_Handler(void){
 TIMER0_ICR_R = 0x00000004; // acknowledge timer0A capture flag
 PW = (TIMER0_TBR_R-TIMER0_TAR_R)&0x00FFFFFF;// from rise to rise
 Phase = (3600*PW)/PERIOD;
 Done = 1;
}

