
 EE345L Fall 2008 Quiz 1A Solutions Page 1

Jonathan W. Valvano
October 10, 2008, 2:00pm-2:50pm.
(5) Question 1. I am looking to see if there is a correlation between EE319K instructor and EE345L
grades. So far, the two seem uncorrelated (which of course is good).

(10) Question 2. These read-modify-write sequences do not constitute a critical section because their
execution is atomic. In particular, both ISRs run with interrupts disabled.

(10) Question 3. Output high turns on the LED. VOH is the output high voltage of the 9S12
Voltage across resistor is VOH - VD Current through resistor is (VOH - VD)/R
Desired LED circuit is ID, set desired to equal actual. ID = (VOH - VD)/R. Solve R = (VOH - VD)/ ID

(15) Question 4. For each number, we define x4 = I4/16, x3 = I3/16, x2 = I2/16, and x1 = I1/16. We
start with desired function
 x4 = x1*x2 + x3
then, we plug in each definition.
 (I4/16) = (I1/16)*(I2/16) + (I3/16)
Solve for I4 and simplify. We want to divide last to reduce effect of dropout. The following code is
algebraically correct and properly minimizes the error due to dropout.
 I4= (I1*I2)/16 + I3;
However, as you can see from the machine code produced by Metrowerks, it does have a potential
overflow error, because the divide by 16 is a 16-bit divide, rather than a 32-bit divide.
 0000 fc0000 [3] LDD I1
 0003 fd0000 [3] LDY I2
 0006 13 [3] EMUL ;RegY:D is 32-bit product
 0007 49 [1] LSRD ;***neglects most significant bits
 0008 49 [1] LSRD
 0009 49 [1] LSRD
 000a 49 [1] LSRD
 000b f30000 [3] ADDD I3
 000e 7c0000 [3] STD I4
To handle overflow, you need to promote the multiply to 32 bits, and perform the /16 in 32-bits. I
define a 32-bit temporary variable called Product to perform the 16 by 16 into 32 bit multiply.
 Product = (unsigned long)I1*(unsigned long)I2;
 I4= (unsigned short)(Product/16) + I3;
 Notice now the product and /16 are 32 bits
 0000 fc0000 [3] LDD I1
 0003 fd0000 [3] LDY I2
 0006 13 [3] EMUL
 0007 7c0000 [3] STD Product:2
 000a 7d0000 [3] STY Product
 000d c604 [1] LDAB #4
 000f b765 [1] TFR Y,X
 0011 fd0000 [3] LDY Product:2
 0014 160000 [4] JSR _LSHRU ;(RegXY)>>4
 0017 f30000 [3] ADDD I3
 001a 7c0000 [3] STD I4

 EE345L Fall 2008 Quiz 1A Solutions Page 2

Hand execute your code with x1=1.5, x2=2, x3=0.25 to verify it calculates x4=3.25.
 I1 = 16*1.5 = 24 1.50 = 24/16
 I2 = 16*2 = 32 2.00 = 32/16
 I3 = 16*0.25 = 4 0.25 = 4/16
 I4 = (24*32)/16+4 = 48+4 = 52 (3.25 = 52/16)

(5) Question 5. Notice the output is low for 200, and high for 100
state is A 1) wait 100; 2) input=0; 3) output =0; then 4) set next state =B
state is B 1) wait 200; 2) input=0; 3) output =1; then 4) set next state =A
state is A 1) wait 100; 2) input=0; 3) output =0; then 4) set next state =B
state is B 1) wait 200; 2) input=0; 3) output =1; then 4) set next state =A
F) The system oscillates between state A and state B with the output toggling high and low, with the
output being low for a longer time than the output is high.

(10) Question 6.
Part a) v1 is allocated in C) EEPROM
Part b) v2 is allocated in A) Global
Part c) v3 is allocated on the B) Stack
Part d) v4 is allocated in A) Global

(10) Question 7. 100 mA will require the 2N2222 (because it can handle up to 500 mA of ICE). We
could have used any NPN with ICE > 100mA, e.g., TIP120, IRF540. The VCE on voltage of the
2N2222 is 0.3V. Because the current gain is 100 (hfe) the base current needs to be 100mA/100 = 1mA.
The IOH of the 9S12 can supply this 1mA (IOH can be up to 10 mA). Because the VOH of the 9S12 is
4.2V (or greater) and the VBE if the 2N2222 is 0.6V (or less), the resistor from the 9S12 to the 2N2222
base must be less than (4.2-0.6V)/1mA = 3.6/0.001 = 3.6 kΩ.

Bad solution

PT6

+6

R

PT6

7.2, 8.4 or 9.6

R

R2

I suggest making R much less than 3.6 kΩ (e.g., 1 kΩ) because it will force the NPN into saturation,
independent of the VOH of the 9S12, the VBE of the 2N2222, the hfe of the 2N2222, and the resistance
of the coil. Therefore, when the digital output is high, the voltage across the relay will be 5.7V. You
might have been tempted to use a higher voltage supply, like the “Bad solution” and use a series
resistor (R2) to drop the voltage down to 6V. There are two fundamental problems with the “Bad
solution”. First, the solution wastes power, the power delivered into R2 is lost as heat. Second, the
resistance of the coil is a function of the mechanical load on the electromagnet. The coil resistance can
not be assumed to be constant.

 EE345L Fall 2008 Quiz 1A Solutions Page 3

(35) Question 8. Spin a 2-phase synchronous motor (I fabricated this problem).

Part a) The first possibility has no time, but has two states with output = 3.

S0
0

S2
2

S3a
3

Initial
S3b

3
S1
1

The second approach adds a time to the state, so there will be only 4 states and one less interrupt.

S0
0

1000

S2
2

1000

S3
3

2000

Initial
S1
1

1000

Part b) Definition of the structure.
const struct State{
 unsigned char Output; // 0,2,3,1 sequence
 unsigned short Time; // delay in usec
 const struct State *Next; // no inputs, one next state
};
typedef const struct State StateType;
typedef StateType *StatePtr;
Part c) Definition of the FSM.
#define S0 &FSM[0]
#define S2 &FSM[1]
#define S3 &FSM[2]
#define S1 &FSM[3]
StateType FSM[4]={
 {0,1000,S2}, // S0
 {2,1000,S3}, // S2
 {3,2000,S1}, // S3
 {1,1000,S0}}; // S1
Part d) The main program
StatePtr Pt; // pointer to current state
void main(void){
 TSCR1 = 0x80; // Enable TCNT 4 MHz in run mode
 TSCR2 = 0x02; // divide by 4 TCNT prescale, 1us (0x03 for 9S12DP512)
 TIOS |= 0x80; // activate TC1 as output compare
 TIE |= 0x80; // arm OC1
 DDRT |= 0x03; // PT1,PT0 outputs
 Pt = S0; // first state
 PTT = Pt->Output; // perform output for first state
 TC7 = TC7+Pt->Time; // time for first state
 Pt = Pt->Next; // second state
 asm cli
 for(;;);
}
Part e) The output compare interrupt 7 service routine that outputs to PT1, and PT0.
interrupt 15 void TC7handler(void){
 TFLG1 = 0x80; // acknowledge OC7
 PTT = Pt->Output; // perform output for this state
 TC7 = TC7+Pt->Time; // time for this state
 Pt = Pt->Next; // next state
}

