(10) Question 1. Debugging dump.
Part a) This debugging monitor is *minimally intrusive*.
Part b) When defining intrusiveness, it is better to quantify exactly how much change the instrument affects the system being tested. This code only takes 20 cycles to execute. As a fraction, this is only 20/8000.

(bonus) For an inductor, \(V = L \frac{dl}{dt} \) (FYI, the capacitor is \(I = C \frac{dV}{dt} \))

(15) Question 2. Critical sections may occur when there is a nonatomic read-modify-write access to a shared global. One cannot tell if software like \(\text{bReg} = \neg \text{bOC1} \); will be atomic without seeing the assembly code the compiler produces. The machine is not atomic with respect to lines of C, rather most assembly instructions are atomic.

```c
short bOC1=0; // true if first ISR occurred first
short bReg=0; // true if first call to function occurred first
interrupt 9 void IC1handler(void){
    if((bReg==0)&&(bOC1==0)) bOC1 = 1; // interrupt first
    TFLG1 = 0x02; // acknowledge OC1
    Stuff1();
}
void RegularFunction(void){
    asm sei // make atomic, to remove critical section
    if((bReg==0)&&(bOC1==0)) bReg = 1; // function first
    asm cli
    Stuff2();
}
```

Solution that does NOT disable interrupts

```c
short bOC1=0; // true if first ISR occurred first
short bReg=0; // true if first call to function occurred first
char bLooking=1; // true until first occurrence
interrupt 9 void IC1handler(void){
    if(bLooking){
        bLooking = 0; // stop looking
        bOC1 = 1; // interrupt was first
    }
    TFLG1 = 0x02; // acknowledge OC1
    Stuff1();
}
void RegularFunction(void){
    asm clra            ;new value for bLooking
    asm ldx #bLooking   ;pointer to bLooking
    asm minm 0,x        ;in either case bLooking is now 0, carry set if used to be 1
    asm bcc skip        ;skip if second program to execute
    asm movw #1,bReg    ;regular function first
    asm skip:
    Stuff2();
}
```

(20) Question 3. Draw a Moore FSM graph to solve the following problem.
(20) **Question 4.** The goal is to eliminate jitter. The proper solution occurs when one interrupt is time-shifted by 500 μs from the other interrupt.

Part a) Let t be an arbitrary time reference in ms. The OC1 interrupts occur (every 1 ms) at $t+1$, $t+2$, $t+3$, … The OC2 interrupts occur (every 2 ms) at $t+1.5$, $t+3.5$, $t+5.5$, …

```c
void Question5_Init(void){
    TSCR1 = 0x80; // Enable TCNT 8 MHz in run mode
    TSCR2 = 0x03; // divide by 8 TCNT prescale, 1 us
    TIOS |= 0x06; // activate TC1,TC2 as output compares
    TIE |= 0x06;  // arm OC1, OC2
    TC1 = TCNT+1000; // First OC1 in 1ms
    TC2 = TC1+500;  // First OC2 in 0.5ms after the OC1 interrupt
    TFLG1 = 0x06;  // clear both flags
    asm cli
}
```

Part b) If you acknowledge using `TFLG1 |= 0x02;`, or `TFLG1 |= 0x04;`, it will clear all 8 bits of `TFLG1`, which is very BAD. If you use code like `TC1 = TCNT+1000;`, then the interrupt period will not be accurate.

```c
interrupt 9 void TC1handler(void){
    TFLG1 = 0x02; // acknowledge OC1
    Task1();
    TC1 = TC1+1000; // execute Task 1 every 1ms
}
```
```c
interrupt 10 void TC2handler(void){
    TFLG1 = 0x04; // acknowledge OC2
    Task2();
    TC2 = TC2+2000; // execute Task 2 every 2ms
}
```

(10) **Question 5.** $n*1024$ must be less than 65535 to avoid overflow. Choose smallest error

\[
\text{out} = \frac{(12*in)}{17};
\]

or

\[
\text{out} = \frac{(12*in+8)}{17};
\]

(15) **Question 6.** 100 mA will require the 2N2222 (because it can handle up to 500 mA of I_{CE}). We could have used any NPN with $I_{CE} > 100$mA, e.g., TIP120, IRF540. The V_{CE} on voltage of the 2N2222 is 0.3V. Because the current gain is 100 (h_{fe}) the base current needs to be 100mA/100 = 1mA. The I_{OH} of the 9S12 can supply this 1mA (I_{OH} can be up to 10 mA). Because the V_{OH} of the 9S12 is 4.2V (or greater) and the V_{BE} if the 2N2222 is 0.6V (or less), the resistor from the 9S12 to the 2N2222 base must be less than $(4.2-0.6V)/1mA = 3.6/0.001 = 3.6 \, k\Omega$. I suggest making R much less than 3.6 kΩ (e.g., 2 kΩ) because it will force the NPN into saturation, independent of the V_{OH} of the 9S12, the V_{BE} of the 2N2222, the h_{fe} of the 2N2222, and the resistance of the coil. Therefore, when the digital output is high, the voltage across the motor will be 5.7V. You might have been tempted to use a higher voltage supply, like the “Bad solution” and use a series resistor (R_2) to drop the voltage down to 5V. There are two fundamental problems with the “Bad solution”. First, the solution wastes power, the power delivered into R_2 is lost as heat. Second, the resistance of the coil is a function of the mechanical load on the electromagnet. The coil resistance can not be assumed to be constant.

![Bad solution diagram](image)