
Last Name: First	Name:
Jonathan W. Valvano February 25, 2004, 1:00	pm-1:50pm
This is a closed book exam. No notes or calculators are	allowed, just a pencil and eraser. You must put your
answers in the answer boxes only, information written outsi	de the box will not be graded. You have 50 minutes, so
please allocate your time accordingly. Please read the entir	e quiz before starting.
<pre>static char aa=0;</pre>	
char addIt(const char	bb){char cc;
aa++;	
cc = aa+bb;	
return(cc);} void main(void){char d	d. mentin about on:
ee = PORTT;	d, static char ee,
dd = addIt(ee+5);	
(10) Question 1. At the time when the cc=aa+bb; line	is being executed, which of the
variables aa bb cc dd ee will be saved on the stack? I	
are legally within the scope of the function, but which ones	
are regardy within the scope of the function, but which ones	are physically on the stack.
(5) Question 2. Give the minimum and maximum value	og that ann ha
represented using 8-bit signed binary fixed-point, with a res	
Note: 2 ⁻⁴ equals 1/16.	orution of 2. ?
Note. 2 equals 1/10.	
(5) Question 3. What is the value of a 16-bit unsigne	d desimal fixed point number
(resolution is 10^{+2} , which equals 100) if the integer stored in	
(resolution is 10°, which equals 100) if the integer stored in	Themory is 12545?
(20) Questian 4. Consider the sequence of events that even	ur as real time interments (DTI) are initialized at a 4 006
(20) Question 4. Consider the sequence of events that occurrence project the first interrupt is triggered, the first time to	
ms period, the first interrupt is triggered, the first time to	he interrupt service foutile is executed, and then the
foreground continues to execute.	lish desires the consention of the
(4) Part a) Which three events must your software accomp	iisii during the execution of the
ritual? Give three letters in the proper execution order.	
(4) Part b) Which single event will trigger a RTI interrupt	! Give one letter specifying the
event that causes an interrupt to occur.	
(4) Part c) Which three events occur automatically in hardw	
making the thread switch from foreground to background? I	
in software as the interrupt service routine is executed. Give	e three letters but this time list
them in the proper time sequence order.	
(4) Part d) You want the interrupts to occur periodically a	
event must your software accomplish during the execution	of the interrupt service routine?
Give one letter.	
(4) Part e) Each interrupt service routine ends with a rt	instruction. What action is
caused by executing this instruction? Give one letter.	
A) RTICTL = 0×03 ; //MC68HC812A4	H) Timer hardware causes RTIE to become 1
RTICTL = 0x33; //9S12C32	I) Timer hardware causes RTIE to become 0
B) RTICTL = 0x80; //MC68HC812A4	J) Timer hardware causes RTIF to become 1
CRGINT $ = 0 \times 80; //9S12C32$	K) Timer hardware causes RTIF to become 0
C) RTICTL &= ~0x80; //MC68HC812A4	L) The 6812 hardware sets the I bit to 1
CRGINT &= ~0x80; //9S12C32	M) The 6812 hardware clears the I bit to 0
D) RTIFLG = 0x80; //MC68HC812A4	N) The 6812 hardware pushes registers on stack
CRGFLG = 0x80; //9S12C32	O) The 6812 hardware loads interrupt vector into SP
E) RTIFLG = 0x00; //MC68HC812A4	P) The 6812 hardware loads interrupt vector into PC
CRGFLG = 0x00; //9S12C32	Q) All registers are pulled off the stack, returning
F) asm sei	control back to the foreground with I=0
G) asm cli	R) All registers are pulled off the stack, returning
•	control back to the foreground with I=1
	-

A) high speed CMOS J) V_{OH} S) interrupt acknowledge AA) non-intrusiveness B) Schottky K) V_{OL} T) interrupt arm BB) nonvolatile C) atomic L) desk check U) interrupt enable CC) open collector D) reentrant M) embedded V) interrupt vector DD) tristate E) volatile N) friendly W) invasiveness EE) real-time F) busy waiting O) stabilize X) I_{OH} FF) multi-threaded G) critical section GG) blind cycle P) I_{IH} Y) I_{OL} Z) latency $H) V_{IH}$ $Q) I_{IL}$ R) instrument I) V_{IL}

(30) Question 14. An LED and two switches are attached to Port T as shown below. The other 5 bits of Port T are used for other unrelated tasks. Note: when the switch is pushed the input becomes 0.

The answers to this problem do not need to be complete functions, just the C code fragments.

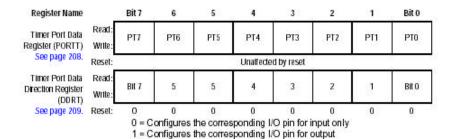
(5)	Part a)	Which	equation	should b	e used t	o determine	R1 a	nd R2?	Specify	one l	letter.
-----	---------	-------	----------	----------	----------	-------------	------	--------	---------	-------	---------

- A) $R1 < (5-V_{IH})/I_{IH}$
 - C) R1 < $(5-V_{IL})/I_{IL}$
- E) $R1 < (V_{IH}-V_{IL})/I_{IL}$

- B) $R1 < (V_{IH})/I_{IH}$
- D) $R1 < (V_{IL})/I_{IL}$
- $F) \ R1 < (V_{IH}\text{-}V_{IL})/(I_{IH}\text{-}I_{IL})$
- (5) Part b) Assume the V_{OL} of the 7405 is 1V. The desired operating point of the LED is 3V and 10mA. What resistor value should be used for R3? Give units.

(5) Part c) Write friendly C code that makes PT5 an output.

(5) Part d) Write friendly C code that makes PT2 and PT3 inputs.


(10) Part e) Write C code that continuously reads the two inputs.

After reading the value of the two switches you should turn on the LED if either switch is pressed or turn off the LED if both switches are not pressed.

Be friendly.

No debouncing required.

MC68HC812A4 registers

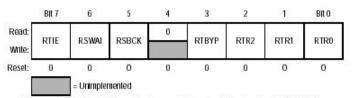


Figure 10-7. Real-Time Interrupt Control Register (RTICTL)

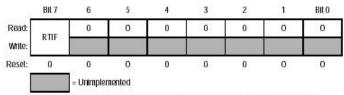
RTIE - Real Time Interrupt Enable

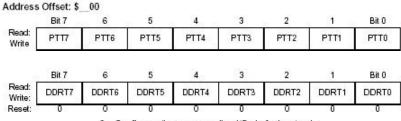
Read and write anytime.

- 0 = Interrupt requests from RTI are disabled.
- 1 = Interrupt will be requested whenever RTIF is set.

RTR2, RTR1, RTR0 — Real-Time Interrupt Rate Select Read and write anytime.

RTR2	RTR1	RTR0	Divide M By:	Time-Out Period M = 4.0 MHz	Time-Out Period M = 8.0 MHz
0	0	0	OFF	OFF	OFF
0	0	1	213	2.048 ms	1.024 ms
0	. 1	0	214	4.096 ms	2.048 ms
0	- 1	1	215	8.196 ms	4.096 ms
1	0	0	216	16.384 ms	8.196 ms
1	0	1	217	32.768 ms	16.384 ms
1	1	0	218	65.536 ms	32.768 ms
1	1	1	219	131.72 ms	65.536 ms
		_			




Figure 10-8. Real-Time Interrupt Flag Register (RTIFLG)

RTIF — Real Time Interrupt Flag

This bit is cleared automatically by a write to this register with this bit set.

- 0 = Time-out has not yet occurred.
- 1 = Set when the time-out period is met.

9S12C32 registers

0 = Configures the corresponding I/O pin for input only 1 = Configures the corresponding I/O pin for output

Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RTICTL	Read: Write:	0	RTR6	RTR5	RTR4	RTR3	RTR2	RTR1	RTR0
CRGFLG	Read:	RTIF	PROF	0	LOCKIF	LOCK	TRACK	SCMIF	SCM
OTTO: LO	Write:	851.50	11.01		LOCITAL			00	
CRGINT	Read:	RTIE	0	0	LOCKIE	0	0	SCMIE	0
CITOIN	Write:	IXIIL			LOOKIL			SOMIL	

RTIF - Real Time Interrupt Flag

RTIF is set to 1 at the end of the RTI period. This flag can only be cleared by writing a 1. Writing a 0 has no effect. If enabled (RTIE-1), RTIF causes an interrupt request.

- 1 RTI time-out has occurred.
- 0 RTI time-out has not yet occurred.

RTIE - Real Time Interrupt Enable Bit.

- 1 Interrupt will be requested whenever RTIF is set.
- 0 Interrupt requests from RTI are disabled.

RTR[6:4] - Real Time Interrupt Prescale Rate Select Bits

These bits select the prescale rate for the RTI. See Table 3-2.

RTR[3:0] — Real Time Interrupt Modulus Counter Select Bits

These bits select the modulus counter target value to provide additional granularity. Table 3-2 shows all possible divide values selectable by the RTICTL register. The source clock for the RTI is OSCCLK.

Table 3-2 RTI Frequency Divide Rates

RTR[3:0]	RTR[6:4] =								
	000 (OFF)	001 (2 ¹⁰)	010 (2 ¹¹)	011 (2 ¹²)	100 (2 ¹³)	101 (2 ¹⁴)	110 (2 ¹⁵)	111 (2 ¹⁶)	
0000 (+1)	OFF*	2 ¹⁰	211	2 ¹²	2 ¹³	214	2 ¹⁵	2 ¹⁶	
0001 (+2)	OFF*	2x2 ¹⁰	2x2 ¹¹	2x2 ¹²	2x2 ¹³	2x2 ¹⁴	2x2 ¹⁵	2x2 ¹⁶	
0010 (+3)	OFF*	3x2 ¹⁰	3x2 ¹¹	3x2 ¹²	3x2 ¹³	3x2 ¹⁴	3x2 ¹⁵	3x2 ¹⁶	
0011 (+4)	OFF*	4x2 ¹⁰	4x2 ¹¹	4x2 ¹²	4x2 ¹³	4x2 ¹⁴	4x2 ¹⁵	4x2 ¹⁶	
0100 (+5)	OFF*	5x2 ¹⁰	5x2 ¹¹	5x2 ¹²	5x2 ¹³	5x2 ¹⁴	5x2 ¹⁵	5x2 ¹⁶	
0101 (+6)	OFF*	6x2 ¹⁰	6x2 ¹¹	6x2 ¹²	6x2 ¹³	6x2 ¹⁴	6x2 ¹⁵	6x2 ¹⁶	
0110 (+7)	OFF*	7x2 ¹⁰	7x2 ¹¹	7x2 ¹²	7x2 ¹³	7x2 ¹⁴	7x2 ¹⁵	7x2 ¹⁶	
0111 (+8)	OFF*	8x2 ¹⁰	8x2 ¹¹	8x2 ¹²	8x2 ¹³	8x2 ¹⁴	8x2 ¹⁵	8x2 ¹⁶	