in the answer boxes only, information written outside the box will not be graded. You have 50 minutes, so please allocate your time accordingly. *Please read the entire quiz before starting*.

(5) Question 1. What is the value of an 8-bit unsigned binary fixed-point number (resolution is 2^3 , which equals 1/8) if the integer stored in memory is 25?

For questions 2-6, the definition is given and you are asked to give the correct term described by that definition. Since there are more terms than definitions, not all terms will be used. *Answer each as A through R*.

(4) Question 2. The situation when the presence of the debugger itself causes the software/hardware system to operate abnormally.

(4) Question 3. A type of logic that has only two output states, low or off.

(4) Question 4. A debugging technique that fixes all its inputs to specific values and can be repeated over and over.

(4) Question 5. A type of logic in which the output can be high, low, or off.

(4) Question 6. A system in which the time between when new input is ready and the time when the input is read by the software is small and bounded.

A) high speed CMOSF) busy waitingB) SchottkyG) real-timeC) atomicH) nonvolatileD) blind cycleI) intrusiveE) volatileJ) open collecto

K) tristate L) desk check M) embedded N) friendly O) stabilize

E) volatile J) open collector O) stabilize (5) Question 7. A signed fixed-point system has a range of values from -10.00 to 10.00 with a resolution of 10^{-2} . Note: 10^{-2} equals 0.01. With which of the following **data types** should the software variables be allocated? When more than one answer is possible choose the most space efficient type.

A) unsigned charB) charE) unsigned shortF) short

C)float G)double

P) latency

Q) invasiveness

R) instrument

Quiz 1A

(20) Question 8	Design a minimal-cost positive-	logic address dec	oder for YourDevice i	n the following system.
RAM	\$6000-\$6FFF		Show	1) design steps,
YourDevice	\$7000-\$7FFF			2) equation
ROM	\$E000-\$FFFF			3) circuit.
(25) Question 9	• There is a 32k by 8 bit PROM in	terfaced to a 6811	running at 2 MHz as	shown below
6811 F	E HC10	/CE ROM	A14-A0 XX	X
A14	-A8	A14-A8	/CE	
AD7-4		A7-A0	D7-D0	
Assume $t_a = 12$	0 ns, and $t_b = 20$ ns. Assume a 5r	Is gate delay thro	ugh the 74LS 10 and 74	4HC573. Determine RDA and
RDR. Give your	answer in numerical form, definit	ng Ons at the start	of the cycle.	
read data availa form of (number	ble interval , which should be give ,number), such as (100,500)	en in the read d form o	ata required interval, f (number,number), suc	which should be given in the ch as (100,500)

(25) Question 10. Write one function that receives a single ASCII character from the SCI with echo. You may assume the SCI device is already initialized. You will use busy-wait synchronization. The following sequence of events should occur in this order: 1) wait for new data to be received by the SCI device; 2) receive this new data; 3) wait for the transmit channel to be idle; 4) transmit this new data back (echo); 5) return by value this new data. I want you to directly access the SCI I/O device registers, rather than calling existing functions like SCI_InChar and SCI_OutChar. Comments and programming style will be graded.

(10) Part a) Show the code that will be placed in the **SCI.h** file

(15) Part b) Show the code that will be placed in the **SCI.c** file

	7	6	5	4	3	2	1	0
R	0	0	0	SBR12	SBR11	SBR10	SBR9	SBR8
W				ODITIZ	0.0.1.1	OBITIO	00.10	00110
RESET:	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
R	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
RESET	0	0	0	0	0	1	0	0

Figure 3-2 SCI Baud Rate Registers (SCI BDH/L)

baud rate = SCI module clock / (16 x BR), where BR is the content of the SCI baud rate registers, bits SBR12 through SBR0.

	7	6	5	4	3	2	1	0
R	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
RESET:	0	0	0	0	0	0	0	0

Figure 3-4 SCI Control Register 2 (SCICR2)

TE — Transmitter Enable Bit

TE enables the SCI transmitter and configures the TXD pin as being controlled by the SCI. The TE bit can be used to queue an idle preamble.

1 - Transmitter enabled

0 - Transmitter disabled

RE - Receiver Enable Bit

RE enables the SCI receiver.

Receiver enabled

0 – Receiver disabled

Figure 3-5 SCI Status Register 1 (SCISR1)

TDRE - Transmit Data Register Empty Flag

TDRE is set when the transmit shift register receives a byte from the SCI data register. When TDRE is 1, the transmit data register (SCIDRH/L) is empty and can receive a new value to transmit.Clear TDRE by reading SCI status register 1 (SCISR1), with TDRE set and then writing to SCI data register low (SCIDRL).

1 - Byte transferred to transmit shift register; transmit data register empty

0 - No byte transferred to transmit shift register

RDRF — Receive Data Register Full Flag

RDRF is set when the data in the receive shift register transfers to the SCI data register. Clear RDRF by reading SCI status register 1 (SCISR1) with RDRF set and then reading SCI data register low (SCIDRL).

1 - Received data available in SCI data register

0 - Data not available in SCI data register

SCIDRL	Read:	R7	R6	R5	R4	R3	R2	R1	R0
	Write:	T7	T6	T5	T4	T3	T2	T1	T0

Figure 3-7 SCI Data Registers

	TCNT															
	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
R W	tcnt 15	tent 14	tcnt 13	tcnt 12	tent 11	tcnt 10	tcnt 9	tent 8	tont 7	tcnt 6	tcnt 5	tcnt 4	tont 3	tcnt 2	tcnt 1	tont t 0
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The 16-bit main timer is an up counter.

Figure 9.34. Simplified bus timing for the 6811 in expanded mode.

Num	Characteristic	1.0 MHz	2.0 MHz	2.1 MHz	Units
	Frequency	1.0	2.0	2.1	MHz
t ₁	Cycle Time	1000	500	476	ns
\mathbf{t}_2	Pulse Width E low	480	230	218	ns
t ₃	Pulse Width E high	480	230	218	ns
t ₄	rise/fall time	20	20	20	ns
t ₉	address hold time	95.5 min	33 min	30 min	ns
t ₁₂	A15-A8,R/W valid time	281.5 min	94 min	85 min	ns
t ₁₇	Read data setup time	30 min	30 min	30 min	ns
t _{18A}	Read data hold time	10 min	10 min	10 min	ns
t _{18B}	Read data goes hiZ	145.5 max	83 max	80 max	ns
t ₁₉	Write data delay time	190.5 max	128 max	125 max	ns
t ₂₁	Write data hold time	95.5 min	33 min	30 min	ns
t ₂₂	A7-A0 valid time	271.5 min	84 min	75 min	ns
t ₂₅	A7-A0 hold time	95.5 min	33 min	30 min	ns
t ₂₆	E to AS rise time	115.5	53	50	ns
t ₂₇	AS pulse width	221	96	90	ns

Note: Measurement points shown are 20% and 70% of V_{DD}.

Figure 10-14. Multiplexed Expansion Bus Timing Diagram