
1

ECE 445L – Embedded System Design Lab

Quiz 1 review

Spring 2025

Quiz 1

• Quiz will be in person. Closed book, closed notes.

• You may have no electronic devices

• You may bring a double-sided 8.5” x 11.0” crib-sheet
– Handwritten

– Do not print any software (it will not help)

• You will NOT need a calculator.

2

Quiz 1 Topics (covers Weeks 1 – 4)

• Key concepts

• Some True/False (read carefully)

• Fixed Point arithmetic

• ARM Cortex-M4 architecture

• SW & HW debugging

• Interrupts, real time, jitter, NVICs

• FIFO analysis, CPU bound, I/O bound, Little’s Thm

• Critical sections

• Sampling, PMF, Nyquist, CLI

• Data Acquisition Systems

• LED, switch, buzzer, MOSFET, capacitor, inductor

• OSI, IP, DNS, TCP, UDP, sockets, MQTT
3

4

HW stuff from previous courses that
you should already know

• Power
– Voltage ✕ Current

– Curent2 ✕ Resistance

– Voltage2 / Resistance

• Energy
– Power ✕ Time

• Time
– Resistance ✕ Capacitance

• Battery Capacity
– mA-Hour

– What are the limitations?

1/27/2010

• Resistor
– What is the equation?

– When will it explode?

• Capacitor
– What is the equation?

– DC versus AC response?

• Inductor
– What is the equation?

– DC versus AC response?

• Diode, BJT, MOSFET

– I/V curves

EE 445L – Bard, McDermott, Valvano

Number Representations

• Integers

– Fixed-width (8, 16, 32, 64) integer number

• Reals (rational)

– Fixed-point number  I • 

• Store I, but  is fixed

• Decimal fixed-point (=10m) = I • 10m

• Binary fixed-point (=2m) = I • 2m

– Floating-point number = I • BE

• Store both I and E (only B=2 is fixed)

EE 445L – Bard, McDermott, Valvano

What is 22/7?
What is 24/17?

• Why:
 express values with non-integer values
 no floating-point hardware support

• When:
 range of values is known
 range of values is small

• How:
 1) Variable integer, called I.
 - may be signed or unsigned
 - may be 8, 12, 16, 24 or 32 bits (range/precision)

 2) Fixed constant, called  (resolution)
 - value is fixed, and cannot be changed
 - not stored in memory
 - specify this fixed constant using comments

EE 445L – Bard, McDermott, Valvano

Fixed-point numbers

• How to design a fixed-point number?

– Integer can be signed or unsigned

– Range is the number of distinguishable values that

can be represented.

• determined by the number of bits used to store the variable

integer, e.g., 8-bits, 12-bits 16-bits, 24-bits or 32-bits

– Resolution is the smallest difference in value that

can be represented.

• equal to the fixed constant (Δ).

• defines units

EE 445L – Bard, McDermott, Valvano

Fixed-point numbers

Range = (0-255)

Resolution =
𝟏

𝟐𝟒

EE 445L – Bard, McDermott, Valvano

Fixed-point numbers

9

Example: Fixed-point numbers

• Create a voltmeter
o N = ADC output, 0 to 4095

o Vin = 3.3V * N/4096 = 0.000805664 * N

o Let Δ = 0.001V, Vin = I * 0.001V

o Solve I in terms of N

o I = 0.805664 * N

• Representations of 0.805664
o I = (805664*N)/100000

o I = (3300*N)>>12

• Calibration coefficients A B
o I = A+ (B*N)>>12

EE 445L – Bard, McDermott, Valvano

• Temperature Measurement System

– Analog to digital converter (ADC)

– 12-bit range (4096 alternatives)

• digital output varies 0 to 4095.

– analog input range is 0 to +3.3 V,

– resolution = range/precision less than 1 mV

• Measurement System

– range is 10 to 40

– 12-bit range

– resolution less than 0.01

EE 445L – Bard, McDermott, Valvano

Example: Fixed-point numbers

11

• Voltage representation
o Vin = 3.3 * N/4096 = 0.000805664 * N

• Temperature representation
o let T = 10 + (30 * Vin/3.3V) = 10 + 9.09(/V) * Vin

o T = I * 0.01

o then I = 1000+3000*N/4096 where Δ is 0.01

• Let A and B be calibration coefficients
o I = A+(B*N)>>12

EE 445L – Bard, McDermott, Valvano

Example: Fixed-point numbers

• Issues (Δ=0.01)

– overflow

I = 1000+(3000*N)/4096;

reduce integer size

promote to higher range/precision

I = 1000+(3000*(uint32_t)N)/4096

– dropout (underflow)
I = 1000+3000*(N/4096);

EE 445L – Bard, McDermott, Valvano

Fixed-point numbers

• C optimization

– I = 1000+(3000*N)/4096;

– I = 1000+(3000*N)>>12;

• Rounding

– I = 1000+(3000*N + 2048)>>12;

• Assembly Optimization

Convert
MOV r1,#3000
MUL r0,r1,r0

 ADD r0,r0,#2048
MOV r1,#1000
ADD r0,r1,r0,LSR #12
BX lr

uint32_t Convert(uint32_t adc){
 return 1000+(3000*adc+2048)/4096;
}

EE 445L – Bard, McDermott, Valvano

Fixed-point numbers

What does this do?
MLA R1, R2, R3, R4

Example: Digital Notch Filter

• Consider this digital filter calculation:
y = x - 1.414213562*x1 + x2

 + 1.237436867*y1 - 0.765625*y2;

• A fixed-point implementation is:
y = x + x2

 +(-724*x1 +634*y1 -392*y2)/512;

fs=480Hz, fc=60Hz,
Q=fc/Δf = 60.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

G
ai

n

Frequency (Hz)

Notch filter

∆f

EE 445L – Bard, McDermott, Valvano

Z-1X

+
Y

Z-1

X
-1.414213562

+

X1
Z-1

X2

X
+

X
-0.765625

Y2

Z-1

X
1.237436867

Y1

+

Y

y = x - 1.414213562*x1 + x2
 + 1.237436867*y1 - 0.765625*y2;

y = x + x2
 +(-724*x1 +634*y1 -392*y2)/512;

Floating point solution 

Fixed point solution 

Z-1X

+

X
-724

X1
Z-1

X2

X
+

>>9

+

X
-392

>>9

Z-1

Y2

Z-1Y1 Y

X
634

+

>>9

Y

EE 445L – Bard, McDermott, Valvano

Fixed-Point Numbers

• Fixed-point numbers are generally stored in “In.Qm”
format (sometimes referred as Qn.m format)

• n = number of bits in integer part.

• m = number of bits in fractional part.

• Example: I8.Q16

 = 32 + 8 + 4 + 2 . 1/2 + 1/4 + 1/16

 = 46 . 8125

27 26 25 24 23 22 21 20 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16

0 0 1 0 1 1 1 0 . 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

CENG 329 Lab Notes By F. Serdar TAŞEL
https://baseconvert.com

https://baseconvert.com/

17

Cortex-M Processor Architecture

RISC Harvard Architecture

EE 445L – Bard, McDermott, Valvano

Few opcodes

Fixed length opcode

Few addressing modes

Execute in 1 or 2
cycles

Only load and store
can access memory

No one instruction can
both read and write
memory

Many general-purpose
registers

For more information read Sections
2.1 and 2.3 in the book

Cortex-M4 Datapath

18

Sign Extend

Register File
R0 – R15

Barrel
Shifter

DATA

MAC

Rn
Rm

A N

B

Address Reg

Incrementor

ADDRESS
(PC)

R15

Rd

ALU

Acc

EE 445L – Bard, McDermott, Valvano

19

Cortex-M Registers

Registers
R0
R1
R2

SP
PC

Processor

Bus interface unit

ALUControl unit

IR

ICode bus
DCode bus
System bus
Private peripheral bus
Advanced high-performance bus

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

R13 (PSP)

PSR
PRIMASK

FAULTMASK
BASEPRI

CONTROL

Program status register

Exception mask registers

CONTROL register

Special registers

EE 445L – Bard, McDermott, Valvano

For more information read Sections
2.1 and 2.3 in the book

Why two?

What is in PRIMASK?

20

Cortex-M Status Registers

APSR contains the current state of the condition
flags from previous instruction executions

IPSR contains the exception type number of the
current Interrupt Service Routine (ISR)

EPSR contains the Thumb state bit and the execution
state bits for the If-Then (IT) instruction

APSR

IPSR

EPSR

Reserved ISR_NUMBER

831 0

Reserved TICI/IT Reserved

31 26 25 24 15 10

ReservedICI/IT

0

N Z C V Q Reserved

31 30 29 28 27 0

PSR Z ISR_NUMBER

831 0

TICI/IT Reserved

26 25 24 15 10

ICI/ITN C V Q

30 29 28 27

EE 445L – Bard, McDermott, Valvano

Port B

0x420a0000

0x420a0004

0x420a0008

0x420a000c

0x420a0010

0x420a0014

0x420a0018

0x420a001c

I/O Bit Banding Example

EE 445L – Bard, McDermott, Valvano 21

Why is bit-banding
important for I/O?

Bit banding on all Cortex M4, bit specific addressing on just TM4C

22

Thread

• A thread is defined as the path of action of
software as it executes. If an interrupt occurs,
then:
– a background thread interrupt service routine (ISR)

is called.

– a new background thread is created for each interrupt
request.

– threads share global variables

– local variables and registers used in the interrupt
service routine are unique

EE 445L – Bard, McDermott, Valvano

Exceptions vs. Interrupts

23

• Exceptions are fault conditions that occur during the
execution of a program.
– Memory management, instruction fetch, unaligned memory

access, divide by zero, etc.

– Synchronous to the flow of instructions.

• Interrupts are events that cause the program flow to
change.
– Timers, GPIO, ADC, PWM, etc

– Asynchronous to the flow of instructions

EE 445L – Bard, McDermott, Valvano

On interrupt, the processor will set the
corresponding interrupt bit in the CPSR to
disable subsequent interrupts of the
same type from occurring.

However, interrupts of a higher priority
can still occur.

Main program user program

ISR-7

IRQ 7

time

ISR-2

ISR-7

IRQ 2

Nested ISR Background Threads

0x2000

0x2002

0x2004

0x2006

0x2008

0x200A

0x200C

0x200E

0x2010

0x2012

0x2014

0x2016

MAIN

0x400A

0x400C

0x400E

0x4010

0x4012

ISR-7
Priority-4

ISR-2
Priority-2

0x3114

0x3116

0x3118

0x311A

0x311C

0x311E0x4014

EE 445L – Bard, McDermott, Valvano

25

Interrupts

• Cortex-M Nested Vector Interrupt Controller (NVIC).

– Interrupt Priorities
• Active Status

– Enable and Clear Enable registers

– Set-Pending and Clear-Pending registers

For more information read Sections 4.7-4.9 in the book

EE 445L – Bard, McDermott, Valvano

26

NVIC Device Enable

• A device must be enabled in the NVIC and its

priority set

• BASEPRI register sets priority of interrupts that are

permitted to occur

– if BASEPRI = 3, interrupts with priority

• 0 – 2 can occur, suspending this interrupt

• 3-7 will be postponed until this interrupt is finished

EE 445L – Bard, McDermott, Valvano

27

Arming (enabling) Device Interrupts

• Each potential interrupt source has a separate

“arming” bit that enables interrupts

– Set the “arm” bits for those devices from which it

wishes to accept interrupts,

– Deactivate “arm” bits in those devices from which

interrupts are not allowed

EE 445L – Bard, McDermott, Valvano

28

Flag

• Each potential interrupt source has a separate
flag bit.

– hardware sets the flag when it wishes to request an
interrupt

– software clears the flag in the ISR to signify it is
processing the request

EE 445L – Bard, McDermott, Valvano

29

• Interrupt Disable bit, I, (bit 0 of PRIMASK)
which is in the program status register.

– enable all armed interrupts by setting I=0

– disable all interrupts by setting I=1

– Setting I=1 does not dismiss the interrupt requests,
rather it postpones them.

EE 445L – Bard, McDermott, Valvano

Interrupt Enable/Disable

Show this in
Lab 2

2731 28 671623 15 5 4 024

J

10 8919

Q TI F modeN Z C V IT[abc][de] E AGE[3:0]

30

Interrupt Enable/Disable

;*********** EnableInterrupts ***************

; disable interrupts

; inputs: none

; outputs: none

EnableInterrupts

 CPSIE I

 BX LR

;*********** DisableInterrupts ***************

; disable interrupts

; inputs: none

; outputs: none

DisableInterrupts

 CPSID I

 BX LR

In startup.s

EE 445L – Bard, McDermott, Valvano

31

Interrupt Requirements

1) Enable device in the NVIC

2) Initialization software will set the arm bit

individual control bit for each possible flag that can

interrupt

3) When it is convenient, the software will

enable, I=0

allow all interrupts now

4) Hardware action (busy to done) sets a flag

e.g., new input data ready, output device idle,

periodic, alarm

EE 445L – Bard, McDermott, Valvano

32

Interrupts

• An interrupt is the automatic transfer of
software execution in response to hardware that
is asynchronous with current software
execution.

– External I/O device (like a keyboard or printer) or

– An internal event (like a periodic timer, ADC, etc.)

– Occurs when the hardware needs service (busy to

done state transition)

Show the two ISRs in Lab2.c

33

Interrupt Processing

• All interrupting systems must have:

– the ability for the hardware to request
action from computer

– the ability for the computer to determine
the source of the request

– the ability for the computer to
acknowledge the interrupt

EE 445L - Spring 2014

EE 445L – Bard, McDermott, Valvano

34

Latency

• Input device
– Latency is the time between new input data ready and

the software reading the data

• Output device
– Latency is the time between output device idle and

the software giving the device new data to output.

• Periodic events (ADC, DAC, control system).
– Latency is the time between when it is supposed to

run and when it is actually run.

– Time jitter

35

Jitter

• Real-time system

– Sampling jitter

– Multicycle instructions

0

100

200

300

400

500

600

700

800

900

1000

79920 79940 79960 79980 80000 80020 80040 80060 80080

N
u

m
b

e
r

o
f

O
c
c
u

rr
e
n

c
e
s

Time between ADC samples (cycles)

Two (or more) interrupts

0
100
200
300
400
500
600
700
800
900

1000

79998 79999 80000 80001 80002

N
u

m
b

e
r

o
f

O
c
c
u

rr
e
n

c
e
s

Time between ADC samples (cycles)

One Interrupt

Divide

No Divide

.12

.76

.12

EE 445L – Bard, McDermott, Valvano

In probability and statistics, a probability
mass function (pmf) is a function that gives
the probability that a discrete random variable
is exactly equal to some value.

https://en.wikipedia.org/wiki/Probability_mass_function

https://en.wikipedia.org/wiki/Probability_mass_function

36

Performance measures

• Hardware or device latency is the time between

when an I/O device is given a command, and the

time when command is completed

• Bandwidth is the maximum data flow or capacity

of a channel

– bandwidth can be limited by the I/O device or software

– can be reported as an overall average or a short-term

max

• Throughput measures how much data was

transmitted into the channel

37

Bandwidth Limits

• I/O bound is defined as

– Bandwidth is limited by speed of I/O device

– Making the I/O device faster will increase bandwidth

– Making the software run faster will not increase
bandwidth

– Software often waits for the I/O device

EE 445L – Bard, McDermott, Valvano

38

Bandwidth Limits

• CPU bound is defined as

– Bandwidth is limited by speed of executing software

– Software does not have to wait for the I/O device

– Making the I/O device faster will not increase
bandwidth

– Making the software run faster will increase
bandwidth

For more information read Sections 5.1, 5.2 in the book

EE 445L – Bard, McDermott, Valvano

Debugging

• Types
– performance debugging (timing)

– functional debugging (data)

• Goal of debugging
– maintain and improve software

– remedy faults or to correct errors in a program

– role of a debugger is to support this endeavor

• The debugging process
– testing,

– stabilizing,

– localizing, and

– correcting errors.

For more information read
Section 3.9 in the book

EE 445L – Bard, McDermott, Valvano

EE 445L – Bard, Valvano 40

Manual Methods

• Desk-checking

– Hand execute the program and think about it a lot
• Write down intermediate results

– Then execute program and compare
• What you thought it should do

• What is it doing?

• Dumps

– save important data into an array, look at it later

• Print statements

– print important during execution

EE 445L – Bard, McDermott, Valvano

Hardware debugging tools

• Logic analyzer

– Multiple channel,
digital, storage scope

– Flexible method of
triggering

LM3S
or
TM4C

Digital
Interface

Digital
Interface

PB1
PB0

Logic Analyzer

Software Debugging Tools

• A debugging instrument

– software that is added to the program for the
purpose of debugging, e.g., print statement

– instrument added using editor, assembler &
loader

EE 445L – Bard, McDermott, Valvano

int f(void)
{

int x = 5;
x = x + 1;
assert(x > 1);

}

• Assertions

– Programmers can use assertions
to help specify programs and to
reason about program correctness.
C.A.R. Hoare, An axiomatic basis for computer programming, Communications of the ACM, 1969.

https://en.wikipedia.org/wiki/C.A.R._Hoare
http://lambda-the-ultimate.org/node/1912
https://en.wikipedia.org/wiki/Axiomatic
https://en.wikipedia.org/wiki/Communications_of_the_ACM

• Choose one of the following techniques
– Place all instruments in the first column of your code,

they are easy to see

– Define instruments with specific pattern in their
names

– Use instruments that test a run time global flag

– Leave a permanent copy of the debugging code
• will cause it to suffer runtime overhead when activated

• simplifies “on-site” customer support.

– Use conditional compilation (or conditional assembly)
• Easy to remove all instruments

– But, Leave the instruments
• Because this is the way it was proven to work

• May need more testing

Software Debugging Tools

EE 445L – Bard, McDermott, Valvano

Intrusiveness

Degree of perturbation caused by
the debugging itself (Heisenberg)

How much the debugging slows down execution

• Nonintrusive
– Characteristic or quality of a debugger

– Allows system to operate as if debugger did not exist

– e.g., logic analyzer, oscilloscope, ICE

• Minimally intrusive
– Negligible effect on the system being debugged

– e.g., dumps (ScanPoint) and monitors, JTAG, assertions

• Highly intrusive
– print statements, breakpoints and single-stepping

EE 445L – Bard, McDermott, Valvano

Nyquist Sampling Theorem

A band-limited signal of finite
energy, which has no
frequency components
higher than W Hertz, may
be completely recovered
from a knowledge of its
samples taken at a rate
greater than 2W samples
per second.

– sampling jitter

– sample precision

EE 445L – Bard, McDermott, Valvano

45

Harry Nyquist

46

Valvano Postulate

If fmax is the largest frequency component of the
analog signal, then you must sample more than
ten times fmax in order for the reconstructed
digital samples to look like the original signal
when plotted on a voltage versus time graph.

EE 445L – Bard, McDermott, Valvano

http://users.ece.utexas.edu/~valvano/Volume1/E-Book/C14_Interactives.htm

http://users.ece.utexas.edu/~valvano/Volume1/E-Book/C14_Interactives.htm

47

Sampling Window

To prevent aliasing => no measurable signal above ½fs.

EE 445L – Bard, McDermott, Valvano

48

Data Acquisition System

General Instrumentation/Control System

Measurand

Transducer

Calibration

Signal

Electromagnetic

Electrical

Thermal
Sound

Optical

Analog
Preamp

Analog Filter

 and

Amplification

Microcomputer

ADC

 Primary sensing
 Variable conversion

Real world

timer

x(t) y(t)

z(t)
Actuator applies energy

49

Qualitative Data Acquisition
System Parameters

• true positive (TP)

– event being monitored occurs and
system detects it

• false positive (FP)

– event being monitored does not occur
but system reports it

• false negative (FN)

– event being monitored occurs and
system fails to detect it

EE 445L – Bard, McDermott, Valvano

50

• Prevalence = (TP + FN) / (TP + TN + FP + FN)

• Sensitivity = TP / (TP + FN)

• Specificity = TN / (TN + FP)

• Positive Predictive Value = TP / (TP + FP)

• Negative Predictive Value = TN / (TN + FN)

EE 445L – Bard, McDermott, Valvano

Qualitative Data
Acquisition System

Parameters

51

Data Acquisition System

• Quantitative DAS parameters

– range (rx)

– resolution (Δx)

– coefficient of variation (σ/μ)

– precision (nx in alternatives)

– frequencies of interest (fmin to fmax)

– repeatability (σ of repeated measurements, same
conditions)

– reproducibility (σ of repeated measurements, different
conditions)

EE 445L – Bard, McDermott, Valvano

52

Analog to Digital Methods

EE 445L – Bard, Valvano

• Sigma delta
• Explain how it works, why we would use it

Vin

Delta

Z

1-bit
DAC

V0

Dout

V2

Sigma

V1=Vin - V0

V2= Vin - V0 dt

1-bit
ADC

while(1){
 sum = 0; count = 0;
 do{ count++;
 if(Z)
 DAC = 0; // V0=0
 else{
 DAC = 1; // V0=+3
 sum++;
 }
 } while(count<1024);
 Dout = sum; // ADC output
 }

DAC

Vin

V0

V2

V1=Vin - V0

3.00
2.25
1.50
0.75
0.00
DAC 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
2.25
1.50
0.75
0.00

-0.75

Z 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

∑∆ Tutorial

https://www.analog.com/en/design-center/interactive-design-tools/sigma-delta-adc-tutorial.html
https://www.analog.com/en/design-center/interactive-design-tools/sigma-delta-adc-tutorial.html

53

Analog to Digital Conversion

• Successive Approximation
ADC
– VIN is approximated as a static

value in the sample and hold
circuit

– the successive approximation
register is a counter that
increments each clock as long
as it is enabled by the
comparator

– the output of the SAR is fed to
a DAC that generates a
voltage for comparison with
VIN

– when the ouput of the DAC =
VIN the value of SAR is the
digital representation of VIN

ECE 445L – Bard, McDermott, Valvano

54

Analog to Digital Methods

• Flash ADC Converter
• Explain how it works, why we would use it

Vin Comparators3.0V

R

Dout

Y0

1 1 1 1 1 1 1 111
0 1 1 1 1 1 1 110
0 0 1 1 1 1 1 101
0 0 0 1 1 1 1 100
0 0 0 0 1 1 1 011
0 0 0 0 0 1 1 010
0 0 0 0 0 0 1 001
0 0 0 0 0 0 0 000

R

R

R

R

R

R

R

Y1

Y2

Y3

Y4

Y5

Y6

Y0Y1Y2Y3Y4Y5Y6 Dout

Digital Logic

ECE 445L – Bard, McDermott, Valvano

55

Time Jitter

• Sampling rate fs, Δt = 1/fs
• Definition of time-jitter:

– Measure ti the time the task is actually run

– Calculate δi = ti – ti-1

– Jitter is maxδi – minδi

– Sampling accuracy is max|δi – Δt |

• Real time systems with periodic tasks,
must have an upper bound, k,

– -k ≤ δi ≤ +k for all i

ECE 445L – Bard, McDermott, Valvano

56

Delayed Service

• Consequences

– Nyquist’s theorem no longer holds

• requires constant sampling interval

– data acquisition and control systems operate
using incorrect calculated values

• consider derivative dx/dt = ((x(t)-x(t-Δt))/Δt

– errors in signal generation

• sound is distorted

• picture is blurry

ECE 445L – Bard, McDermott, Valvano

δV = δt * dV/dt

Slew rate

Error

Jitter

57

Analog-to-Digital Converter Resolution

• Observable x(t) is sensed via transducer as
signal y(t)

– assume a relation, y = f(x)

– range of x is rx and range of y is ry

– precision of x and y is nx and ny respectively

– resolution of x and y is x and y respectively and
x = rx/nx

ECE 445L – Bard, McDermott, Valvano

Measurand Sensor

y = f(x)

x(t) y(t)
ADC

Physical process

Measurement
Variable

Signal
Variable

Data Hazard Classification

Given two instructions I, J, with I occurring before J in
an instruction stream (program execution order):

RAW (read after write): A true data dependence violation

 J tried to read a source before I writes to it,

 so J incorrectly gets the old value.

WAW (write after write): A name dependence violation

 J tries to write an operand before it is written by I

 The writes end up being performed in the wrong order.

WAR (write after read): A name dependence violation

 J tries to write to a destination before it is read by I,

 so I incorrectly gets the new value.

RAR (read after read): Not a hazard.

I
..
..

J

Program
Order

59

int main(void){
while(1){
GPIO_PORTF_DATA_R ^= 0x02;

}
}
Loop LDR r0,[pc,#32]

LDR r0,[r0,#0x00]
EOR r0,r0,#0x02
LDR r1,[pc,#20]
STR r0,[r1,#0x3FC]
B Loop

Critical Section

void ISR1(void){
GPIO_PORTF_DATA_R ^= 0x04;
Stuff1();

}
ISR1 ...

LDR r1,[pc,#56]
LDR r0,[r1,#0x00]
EOR r0,r0,#0x04
LDR r1,[pc,#52]
STR r0,[r1,#0x3FC]
...

• Shared global
• Non-atomic access
• At least one write Show project in Keil

Solution: two ways to remove sharing

EE 445L – Bard, McDermott, Valvano

60

int main(void){
...
while(1){

Display(Hour);
Display(Minute);

}
}

Critical Section

void ISR1(void){
Second++;
if(Second==60){
Second = 0;
Minute++;
if(Minute == 60){

Minute = 0;
Hour++;

}
}

}

Lab 3

EE 445L – Bard, McDermott, Valvano

• Shared global
• Non-atomic access
• At least one write

61

int main(void){
...
while(1){uint32_t myH,myM;
Disable_Interrupts();
myH = Hour;
myM = Minute;
Enable_Interrupts();
Display(myH);
Display(myM);

}
}

Critical Section

void ISR1(void){
Second++;
if(Second==60){
Second = 0;
Minute++;
if(Minute == 60){

Minute = 0;
Hour++;

}
}

}

Solution: make atomic

EE 445L – Bard, McDermott, Valvano

Lab 3
• Shared global
• Non-atomic access
• At least one write

62

uint32_t Time; // shared
int main(void){
...
while(1){uint32_t myT;
myT = Time;
Display(myT/100);
Display(myT%100);

}
}

Critical Section

void ISR1(void){
Second++;
if(Second==60){
Second = 0;
Minute++;
if(Minute == 60){

Minute = 0;
Hour++;

}
} Time = 100*Hour+Minute;

}

Solution: make atomic

EE 445L – Bard, McDermott, Valvano

Lab 3
• Shared global
• Non-atomic access
• At least one write

What is UTC?
https://en.wikipedia.org/wiki/Coordinated_Universal_Time

63

int PutFifo(int32_t data){

 if(((PutI+1)%SIZE) == GetI){

 return 0;
 }
 FIFO[PutI] = data;
 PutI = (PutI+1)%SIZE;

 return 1;
}

void GPIOPortA_Handler (void){
PutFifo(GPIO_PORTA_DATA_R);

}

Wrong: Use local variables
Correct: Interrupt priority
Correct: make atomic

void GPIOPortB_Handler (void){
PutFifo(GPIO_PORTB_DATA_R);

}

Need Reentrant Code

• Function call by two threads
• Recursion

EE 445L – Bard, McDermott, Valvano

Not reentrant!
Why?

64

int PutFifo(int32_t data){
 DisableInterrupts();
 if(((PutI+1)%SIZE) == GetI){
 EnableInterrupts();
 return 0;
 }
 FIFO[PutI] = data;
 PutI = (PutI+1)%SIZE;
 EnableInterrupts();
 return 1;
}

Reentrant Code

void GPIOPortA_Handler (void){
PutFifo(GPIO_PORTA_DATA_R);

}

• Function call by two threads

Correct: Atomic access to Globals

void GPIOPortB_Handler (void){
PutFifo(GPIO_PORTB_DATA_R);

}

EE 445L – Bard, McDermott, Valvano

EE 445L - Spring 2014 65

Input/Output Synchronization

• Timing Mismatch

– Processor ~ MHz

– Peripheral ~ kHz or Hz

– Asynchronous

• Respond to events

– Periodic tasks: ADC, DAC, control systems

– Aperiodic tasks: input, output, alarms

66

I/O SYNCHRONIZATION

Input device

No data
Busy

Data ready
Done

Device gets
new data

Software
accepts data

Output device

Performing
last output

Busy

Output idle
Done

Device
finishes

Software
sends new
data

Device is off
Idle

Start

Device is off
Idle

Start

EE 445L – Bard, McDermott, Valvano

67

INPUT SYNCHRONIZATION

Blind
Cycle

Wait a fixed time

Read data

Busy-
Wait

Status

Read data

Busy

Ready

Interrupt

Fifo

Get data from Fifo

Empty

Input

Read data

Put data in Fifo

return from interruptreturnreturn

Input

return

Input

Some

Input
device

Software

Busy

Time

Wait

Read

Wait

Busy

Ready Ready

Busy

Wait

Process Read Process

EE 445L – Bard, McDermott, Valvano

68

OUTPUT SYNCHRONIZATION

Write data

Write data Write data

Get data from Fifo

Fifo
Empty

Blind
Cycle Busy-

Wait
Status

Busy

Ready

Interrupt

Fifo
Full

Output

Put data in Fifo

return from interruptreturnreturn

Output

return

Output

Not full

Wait a fixed time

Not empty

Output
device

Software

Busy

Time

Wait

Write

Wait

Busy

Ready

Busy

Wait

Generate
Write

Ready

Write
Generate Generate Generate

Ready

EE 445L – Bard, McDermott, Valvano

69

Busy-Wait Conditions

• Predictable

• Simple I/O

• Fixed load

• Dedicated, single thread

• Single process

• Nothing else to do (nothing else you can do)

EE 445L - Spring 2014

EE 445L – Bard, Valvano 70

Multiple Devices
busy-wait synchronization

Bandwidth can be improved by establishing concurrent
I/O operations

EE 445L – Bard, McDermott, Valvano

71

Little’s Theorem1

• λ is the average arrival rate in packets per second (pps)

• R is the average response time of a packet
– Waiting time in the FIFO plus

– Time to be processed by the consumer

• N is the average number of packets in the system
– N-1 stored in the FIFO plus

– 1 being processed by the consumer

Source process
Producer

FIFO Sink process
Consumer

Fifo_Put Fifo_Get

N = R

EE 445L – Bard, McDermott, Valvano

1 https://en.wikipedia.org/wiki/Little%27s_law

How is this
different from

real time?

How do you
prove Little’s

Thm?

https://en.wikipedia.org/wiki/Little%27s_law

72

Using Little’s Theorem

• S be the average service time of a packet

• C is the average service rate (C=1/S)

• Stable if average arrival rate < average service rate

– λ < C

• If stable (FIFO never fills), we estimate response time
– Measure average arrival rate λ

– Measure average FIFO size M, N=M+1

– Calculate R = N/ λ

Source process
Producer

FIFO Sink process
Consumer

Fifo_Put Fifo_Get

N = R

EE 445L – Bard, McDermott, Valvano

Digital Logic Families

• Logic voltage level definitions

– VIL voltage below which an input is

 considered logic low

– VIH voltage above which an input is

 considered logic high

– VOH output voltage for a logic high

 (current less than IOH)

– VOL output voltage for a logic low

 (current less than IOL)

VOL VIL VOH VIH

EE 445L – Bard, McDermott, Valvano

Digital Logic (MOS-TTL(BJT))
Output High State

• The device providing
(driving) the output is
capable of sourcing a
maximum current to that
output
– IOH

• Each input device receiving
(sinking) the output as an
input requires a maximum
current:
– IIH

EE 445L – Bard, McDermott, Valvano

S

G

D

3.3V

IOH

VOH

Input
Output

R

IIH

3.3V

Input

R

IIH

3.3V

Digital Logic (MOS-TTL(BJT))
Output Low State

• The device providing
(driving) the output is
capable of receiving
(sinking) a maximum
current through the output
– IOL

• Each input device
sources a maximum
current:
– IIL

EE 445L – Bard, McDermott, Valvano

Input

R

I1L

3.3V

Input

R

I1L

3.3V

Output

IOL

G

S

D

VOL

Digital Logic (MOS-MOS)
Output High State

• The device providing
(driving) the output is
capable of sourcing a
maximum current to that
output
– IOH

• Each input device receiving
(sinking) the output as an
input requires a maximum
current:
– IIH

EE 445L – Bard, McDermott, Valvano

S

G

D

3.3V

IOH

G

S

D

IIH

VOH

G

S

D

IIH

Input

Output

Input

Digital Logic (MOS-MOS)
Output Low State

• The device providing
(driving) the output is
capable of receiving
(sinking) a maximum
current through the output
– IOL

• Each input device
sources a maximum
current:
– IIL

EE 445L – Bard, McDermott, Valvano

Output

S

G

D

3.3V

IOL

G

S

D

IIL

VOL

Input

S

G

D

3.3V

IIL

Input

Noise Margins

• How much noise can a gate input see
before it does not recognize the input?

EE 445L – Bard, McDermott, Valvano

Capacitance

0

V1

time

3.3

0

T

V1
V2

Input

C

V2

ROutput

V1
V = 3.3-3.3e2

-t/(RC)

Slew rate

2.0

1.3

Transition time

Capacitance loading is an important
factor when interfacing CMOS devices

• Make it run faster
– Decrease R,C

– Increase I, P

• Make it less noisy
– Decrease slew rate

EE 445L – Bard, McDermott, Valvano

Take Aways

• R - Resistive loads require current
amplification

• L - Inductive loads produce back EMF

– Snubber diode(flyback diode, clamp diode, etc)

• C - Capacitive loads will slow down dV/dt
– Time constant, ≈R*C

• Make it go faster by

– Decreasing R and C

– Increasing I

EE 445L – Bard, McDermott, Valvano

Speed is directly
proportional to power

https://en.wikipedia.org/wiki/Flyback_diode

• Logic Families

• Bipolar Transistors

– Saturated Mode

– Current gain hfe

– Activation Vbe

– Output Vce Ice

• Inductance

– Can blow up your laptop

• Capacitance

– Slows down signals

– Reduces EM emissions

Summary

Output

TM4C

R

speaker

+3.3

1N914

PN2222Base

Collector

Emitter

EE 445L – Bard, McDermott, Valvano

Level shifter
required

VOH VIH
IOH IIH
VOL  VIL
IOL IIL

Layers

82
EE 445L – Bard, Valvano

Application

Presentation

Session

Transport

Network

Data link

Physical

OSI

Application

Transport

Internet

Media Access
Control/Physical

Layers

TCP/IP

HTTP, Telnet,
SMTP,FTP

TCP

TCP, UDP

IP, ICMP, IGMP

Ethernet, wifi

Examples

83

Layered Message Protocol

EE 445L – Bard, McDermott, Valvano

User Data

Appl
header

User Data

UDP/TCP
header

Application Data

UDP/TCP
header

IP
header

Application Data

Application

UDP or TCP

IP

UDP segment
or
TCP segment

IP datagram

bits: Ethernet, IEEE802.11, IEEE802.15.4
Physical

message

frames: Data link layer

84

Sequence of events

• Connect to AP

• DNS

• Open a Socket

• Send TCP

• Receive TCP

• Close Socket

EE 445L - Spring 2014

85

IP Addresses, IPv4

Internet

Network Address
Translation (NAT)

Node

Node

Node

Node

 public IP

192.168.1.1

192.168.1.2

192.168.1.3

192.168.1.4

Intranet

Domain Name Service (DNS),

EE 445L - Spring 2014

MQTT

Sensor
Node #1

MQTT
BROKER

Sensor
Node #2

Sensor #1
Data

Gatherer

Sensor #2
Data

Gatherer

Sensor
#1 & #2

Data
Gatherer

Subscribe #2

• MQTT is a Publisher-Subscriber Protocol
– A publisher publishes messages on a topic and a subscriber

must subscribe to that topic to view the message.

• MQTT requires the use of a central Broker as shown
in the diagram below:

EE 445L – Bard, McDermott, Valvano

http://www.steves-internet-guide.com/mqtt-works/

http://www.steves-internet-guide.com/mqtt-works/

MQTT Details

• Subscribers do not have addresses like in email systems,

and messages are not sent directly to subscribers .

• Messages are published to a broker for a particular topic.

• The job of an MQTT broker is to filter messages based on

the topic, and then distribute them to subscribers.

• A client can receive these messages by subscribing to

that topic on the same broker.

• There is no direct connection between a publisher and

subscriber.

• All clients can publish (broadcast) and subscribe

(receive).

• MQTT brokers do not normally store messages

http://www.steves-internet-guide.com/mqtt-works/

EE 445L – Bard, McDermott, Valvano

http://www.steves-internet-guide.com/mqtt-works/

MQTT Protocol

EE 445L – Bard, McDermott, Valvano

http://www.steves-internet-guide.com/mqtt-works/

http://www.steves-internet-guide.com/mqtt-works/

MQTT over TCP

• MQTT uses TCP/IP to connect to the broker.

• TCP is a connection orientated protocol with error

correction and guarantees that packets are received in

order.

• You can consider a TCP/IP connection to be like a

telephone connection.

– Once a telephone connection is established you can

talk over it until one party hangs up.

• Most MQTT clients will connect to the broker and remain

connected even if they aren’t sending data.

• Connections are acknowledged by the broker using

a CONNACK message about once a minute

http://www.steves-internet-guide.com/mqtt-works/

EE 445L – Bard, McDermott, Valvano

http://www.steves-internet-guide.com/mqtt-works/

MQTT over WebSocket

• WebSocket is a computer communications protocol,

providing full-duplex communication channels over a

single TCP/IP connection.

• It is closely associated with HTTP as it uses HTTP for

the initial connection establishment..

• The client and server connect using HTTP and then

negotiate a connection upgrade to WebSocket, the

connection then switches from http to WebSocket.

• The client and server can now exchange full

duplex binary data over the connection.

http://www.steves-internet-guide.com/mqtt-websockets/

EE 445L – Bard, McDermott, Valvano

http://www.steves-internet-guide.com/mqtt-websockets/

	ECE 445L – Embedded System Design Lab�
	Quiz 1
	Quiz 1 Topics (covers Weeks 1 – 4)
	HW stuff from previous courses that you should already know
	Number Representations
	Slide6
	Slide7
	Slide8
	Example: Fixed-point numbers
	Example: Fixed-point numbers
	Example: Fixed-point numbers
	Slide12
	Slide13
	Example: Digital Notch Filter
	Slide15
	Fixed-Point Numbers
	Cortex-M Processor Architecture
	Cortex-M4 Datapath
	Cortex-M Registers
	Cortex-M Status Registers
	Slide21
	Thread
	Exceptions vs. Interrupts
	Slide24
	Interrupts
	NVIC Device Enable
	Arming (enabling) Device Interrupts
	Flag
	Interrupt Enable/Disable
	Interrupt Enable/Disable
	Interrupt Requirements
	Interrupts
	Interrupt Processing
	Latency
	Jitter
	Performance measures
	Bandwidth Limits
	Bandwidth Limits
	Debugging
	Manual Methods
	Hardware debugging tools
	Software Debugging Tools
	Software Debugging Tools
	Intrusiveness
	Nyquist Sampling Theorem
	Valvano Postulate
	Sampling Window
	Data Acquisition System
	Qualitative Data Acquisition System Parameters
	Qualitative Data Acquisition System Parameters
	Data Acquisition System
	Analog to Digital Methods
	Analog to Digital Conversion
	Analog to Digital Methods
	Time Jitter
	Delayed Service
	Analog-to-Digital Converter Resolution
	Data Hazard Classification
	Critical Section
	Critical Section
	Critical Section
	Critical Section
	Need Reentrant Code
	Reentrant Code
	Input/Output Synchronization
	I/O SYNCHRONIZATION
	INPUT SYNCHRONIZATION
	OUTPUT SYNCHRONIZATION
	Busy-Wait Conditions
	Multiple Devices�busy-wait synchronization
	Little’s Theorem1�
	Using Little’s Theorem�
	Digital Logic Families
	Digital Logic (MOS-TTL(BJT))�Output High State
	Digital Logic (MOS-TTL(BJT))�Output Low State
	Digital Logic (MOS-MOS)�Output High State
	Digital Logic (MOS-MOS)�Output Low State
	Noise Margins
	Capacitance
	Take Aways
	Summary
	Layers
	Layered Message Protocol
	Sequence of events
	IP Addresses, IPv4
	MQTT
	MQTT Details
	MQTT Protocol
	MQTT over TCP
	MQTT over WebSocket

