(15) Question 1.
The rise of E occurs at 500ns, the fall of OE occurs at 500+\[5,15\], RDA starts at 500+\[5,15\]+t_a. The worst case is the later RDA = 515+ t_a. RDR starts at 950ns. RDA must overlap RDR, so 515+ t_a \leq 950ns, or t_a \leq 435ns.

This was no part of the question, but what is the largest value possible for t_s so that write data available overlaps write data required?
The fall of E occurs at 1000ns, the rise of WE occurs at 1000+\[5,15\], WDR starts at 1000+\[5,15\]-t_s. The worst case is the earlier WDR = 1005-t_s. WDA starts at 500+128ns=628ns. WDA must overlap WDR, so 628ns \leq 1005- t_s, or t_s \leq 377ns.

(25) Question 2. The goal of this interface is to provide 8 digital inputs using a 74HC165
Part a) There is only one answer, it must be CPOL=1, CPHA=0

void SPI_Init(void){
 DDRM = (DDRM&0x03)|0x38; //PM2 in,PM5-3 out
 PTM |= 0x08; // PL=1, disable latch
 SPICR1 = 0x58; // master, CPOL=1, CPHA=0
 SPICR2 = 0x00; // normal output
 SPIBR = 0; // fastest speed
}

Part b) Write to SPI DR to start transmission, read from SPI DR when done

unsigned char SPI_In(void){
 PTM &= ~0x08; // clear PL to parallel latch
 PTM |= 0x08; // PL=1, latching data into 74HC165
 while(((SPISR&0x20)==0)){};// 1) wait for SPTEF=1,
 SPI DR = 0x00; // 2) dummy output to start SPI
 while(((SPISR&0x80)==0)){};// 3) wait for SPIF=1,
 return SPI DR ; // 4) read result, clear SPIF
}

(10) Question 3. Design a minimal-cost negative-logic address decoder for YourDevice. Choose A4 to separate from I/O, choose A14 to separate from RAM, choose A15 to separate from ROM. Activate YourDevice if A4=0, A14=1, A15=0.

Select = not(not(A4) * A14 * not(A15)) = A4 + not(A14) + A15

(30) Question 4. Use output compare 7 to create a sampling rate of 1000 Hz.
Part a) To what value should you initialize ATDCTL2? Give your answer in hex.

ATDCTL2 = 0x80; // turn on

Part b) The goal is to initialize the ADC so that one start command will sample PAD3 exactly four times, no more no less. To what value should you initialize ATDCTL3? Give your answer in hex.

ATDCTL3 = 0x20; // sequence length = 4
Part c) In order to reduce noise, the 10-bit ADC will be operated at the slowest possible rate.
// choose m so 2(m+1)/Eperiod is 2us, 2(m+1)/0.25=2, m=3
ATDCTL4 = 0x63; // s=18, m=3

Part d) Show the output compare 7 ritual.

```c
void OC7_Init(void) {
    TIOS |= 0x80;     // activate TC7 as output compare
    TSCR1 = 0x80;     // Enable TCNT, 4MHz in run mode
    TSCR2 = 0x02;     // divide by 4 TCNT prescale, TCNT at 1MHz
    PACTL = 0;        // timer prescale used for TCNT
    TIE  |= 0x80;     // arm OC7
    TC7   = TCNT+50;  // first interrupt right away
    asm cli
}
```

Part e) Show the entire output compare 7 interrupt service routine at implements the 1 kHz sampling.

```c
interrupt 15 void TC7handler(void){ // executes at 1000 Hz
    TFLG1 = 0x80;         // acknowledge OC7
    TC7  = TC7+1000;      // 1 ms
    ATDCTL5 = 0x83;       // start sequence of four conversions
    while((ATDSTAT0&0x80)==0){};    // wait for SCF
    Average = (ATDDR3+ATDDR2+ATDDR1+ATDDR0)/4;
}
```

(20) **Question 5.** Design a circuit with three analog inputs V_0, V_1, V_2 and one analog output V_{out}

Add ground gain so sum of gains is 1

$$ V_{out} = \frac{1}{2} V_0 + \frac{1}{4} V_1 + \frac{1}{8} V_2 + \frac{1}{8} V_g $$

Choose R_f (10 kΩ) a common multiple of gains, $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{8}$

Choose input resistors to get the desired gain

- $R_f / R_0 = \frac{1}{2}$ thus $R_0 = 20 \text{ kΩ}$,
- $R_f / R_1 = \frac{1}{4}$ thus $R_1 = 40 \text{ kΩ}$,
- $R_f / R_2 = \frac{1}{8}$ thus $R_2 = 80 \text{ kΩ}$,
- $R_f / R_g = \frac{1}{8}$ thus $R_g = 80 \text{ kΩ}$.

Build circuit, all inputs are positive, so they go to + terminal of op amp. (This is a 3-bit DAC, similar to the 4-bit DAC we currently build in EE319K)