Question 1. First, make a look up table (more points could be added, but these points were specifically given in the problem. Each point is given as the integer part of the fixed-point value.

\[
\begin{align*}
\text{Input} &= \{ 1, 10, 100, 1000, 2000, 10000 \} \\
\text{Output} &= \{-200, -100, 0, 41, 100, 130, 200\}
\end{align*}
\]

We then can use the same lookup/interpolation software developed for lab 7.

Question 2. Implement an SPI output channel with PT7 as its clock and PT6 as its data.

Part a) Show the ritual that initializes the interface. Be friendly. Show comments.

```c
void SPI2_Init(void)
{
    DDRT |= 0xC0; // outputs
    PTT &= ~0x80; // CLK=0
}
```

Part b) Data is stable on rising edge of clock.

```c
void SPI2_Out(unsigned char data)
{
    unsigned int bit;
    for(bit=8; bit; bit--){
        if(data&0x80){ // bits 7,6,5,4,3,2,1,0
            PTT |= 0x40; // data bit high
        } else{
            PTT &= ~0x40; // data bit low
        }
        PTT |= 0x80; // CLK=1, rising edge
        data = data<<1; // next bit
        PTT &= ~0x80; // CLK=0
    }
}
```

Question 3. Connect a 74HC374 octal D flip-flop directly to the address/data bus if the 6811.

Part a) The address decoder for the 74HC374 and the EEPROM:

- 0000 to $01FF$: $0000,000X,XXXX,XXXX$ 9 X’s
- 1000 to $103F$: $0001,0000,00XX,XXXX$ 6 X’s
- 4000: $0100,0000,0000,0000$ no X’s
- $B600$ to $B7FF$: $1011,011X,XXXX,XXXX$ 9 X’s
- $BF00$ to $BFFF$: $1011,1111,XXXX,XXXX$ 8 X’s
- $E000$ to $FFFF$: $111X,XXXX,XXXX,XXXX$ 13 X’s

Choose address lines A15,A14:

- OutputSelect = not(A15)*A14
- EEPROMSelect = A15*A14

Part b) /OE is grounded because the output is always available. Rising edge of CLK at 500ns.

<table>
<thead>
<tr>
<th>Select</th>
<th>R/W</th>
<th>E</th>
<th>CLK</th>
<th>/OE</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Wrong address</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Wrong address</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Wrong address</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Wrong address</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Clock on rising edge</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Ignore read cycles</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Ignore read cycles</td>
</tr>
</tbody>
</table>

Part c) Interface both the EEPROM and the 74HC374 to the 6811.

- CLK = not(E*not(R/W)*not(A15)*A14) so rising edge of CLK occurs at end of write cycle to 4000
- /OE = not(E*R/W*A15*A14) so data driven second half of read cycle from $E000$-FFFF
- /WE = not(E*not(R/W)*A15*A14) so rising edge of /WE occurs at end of write cycle to $E000$-FFFF
Part d) The rising edge of CLK stores into the 374 with a setup of 30 and a hold of 5ns

WDA = Write Data Available = \((2 + 6 + 19, 1 + 21)\) = \((230 + 20 + 128, 500 + 33) = (378, 533)\)

Write Data Required = \((\uparrow CLK - \text{setup}, \uparrow CLK + \text{hold}) = (\uparrow CLK - 30, \uparrow CLK + 5)\) = \((\downarrow E + 10 - 30, \downarrow E + 10 + 5) = (500 + 10 - 30, 500 + 10 + 5) = (480, 515)\)

(30) **Question 4.** The analog hardware for a data acquisition system to measure displacement

Part a) Fill in the following design table. The bridge output (V2-V1) is a differential voltage.

<table>
<thead>
<tr>
<th>Displacement (mm)</th>
<th>R1 (Ω)</th>
<th>R2 (Ω)</th>
<th>R3 (Ω)</th>
<th>R4 (Ω)</th>
<th>V2 (V)</th>
<th>V1 (V)</th>
<th>V2-V1 (V)</th>
<th>V3 (V)</th>
<th>ADC result</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1010</td>
<td>990</td>
<td>990</td>
<td>1010</td>
<td>2.475</td>
<td>2.525</td>
<td>-0.05</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>-0.5</td>
<td>1005</td>
<td>995</td>
<td>995</td>
<td>1005</td>
<td>2.4875</td>
<td>2.5125</td>
<td>-0.025</td>
<td>1.25</td>
<td>256</td>
</tr>
<tr>
<td>0</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>2.5</td>
<td>2.5</td>
<td>0</td>
<td>2.5</td>
<td>512</td>
</tr>
<tr>
<td>0.5</td>
<td>995</td>
<td>1005</td>
<td>1005</td>
<td>995</td>
<td>2.5125</td>
<td>2.4875</td>
<td>0.025</td>
<td>3.75</td>
<td>768</td>
</tr>
<tr>
<td>1</td>
<td>990</td>
<td>1010</td>
<td>1010</td>
<td>990</td>
<td>2.525</td>
<td>2.475</td>
<td>0.05</td>
<td>5.00</td>
<td>1023</td>
</tr>
</tbody>
</table>

Need a gain of \(5/(0.05 - -0.05) = 50\) and an offset of 2.5V

V3 = 50\((V2-V1) + 2.50\)

Part b) Use an instrumentation amp to get differential gain and good CMRR is required. AD627 gain is \(5 + 200k/Rg\), for this amp \(Rg = 200k/45 = 4.44k\). AD623 gain is \(1 + 100k/Rg\), for this amp \(Rg = 100k/49 = 2.04k\).