				<u>Comm</u>	ion Reg	<u>gisters</u>				
	2200 M	Bit 7	6	5	4	3	2	1	Bit 0	
	R W	IOS7	IOS6	IOS5	IOS4	IOS3	IOS2	IOS1	1050	
ΓΙΟ	RESET:	0	0	0	0	0	0	0	0	
	- 1	= The cor = The cor	Capture or responding responding	g channel a	cts as an o	utput com	pare.			
		Bit 7	6	5	4	3	2	1	Bit 0	
	R W	C7F	C6F	C5F	C4F	C3F	C2F	C1F	C0F	
TFLG1	RESET:	0	0	0	0	0	0	0	0	10
one t TMSK1 (A4) res		71 C	61 C	51 C4	41 C	3 2 31 C 0 (21 C	1I C	DI
TIF (C3)	3000000									
TIE (C32)) C71	I-C0I — I	nput Captu	ire/Output	Compare "	x" Interruj	pt Enable.			
ΓΙΕ (C32) ΓSCR (Α4	en.	[Bit 7	6	5	4	3	2	1	Bit 0
	4)		Bit 7 TEN T	6 SWAI T	5 SBCK 1	4 FFCA	3	0	0	0
	4) RE	SET: N — Time 1 = Al	Bit 7 TEN T	6 SWAI T 0 mer to fun	5 SBCK 1 0 ction norm	4 FFCA 0 ally.	3 0 0	322 86		
TSCR (A	4) RE	SET: N - Time 1 = A1 0 = Di N = N = 10000000000000000000000000000000	Bit 7 TEN T o er Enable lows the ti sables the O to 7 a	6 SWAI T 0 mer to fun main timer as deter	5 SBCK 1 0 ction norm ; including mined b	4 FFCA 0 ally. the count oy PR2,	3 0 0	0 0 PR0	0	0

		Bit 7	6	5	4	3	2	1	Bit 0
	Γ	TOI	0	TPU	TDRB	TCRE	PR2	PR1	PR0
TMSK2	RESET:	0	0	1	1	0	0	0	0
	PR2, PR1,	PR0 — Ti	mer Press	aler Select	t.				
	Theset	hree bits se	elect the fi	equency of	f the timer j	orescaler cl	ock derive	d from the	Bus Clock

<u>**9S12C32</u>** TCNT frequency = $24/2^{N}$ MHz</u>

Quiz 2A

(40) Question 1. All code must be friendly.

PLACE THE CORRECT CHOICE FOR EACH QUESTION SHOWN ON THE ANSWER PAGE.

A) B) C) D) E) F) G) H) I) J) K) L) N) O) P) Q) R) S) T)	<pre>asm(" cli"); asm(" rti"); asm(" set"); asm(" set"); asm(" tap"); asm(" swi"); DDRT &= ~0x08; DDRT &= ~0x10; DDRT = 0x10; DDRT = 0x10; DDRT = 0x10; TIOS &= ~0x08; TIOS &= ~0x08; TIOS &= ~0x10; TIOS = 0x08; TIOS = 0x08; TIOS = 0x08; TIOS = 0x08; TIE &= ~0x08; TIE &= ~0x08; TIE &= ~0x08; TIE &= ~0x08; TIE &= ~0x08; TIE &= ~0x08; TIE &= 0x08; TIE = 0x08;</pre>	//9S12C32 //812A4 //9S12C32 //812A4	EE) FF) GG) HH) II) JJ) KK)	<pre>TFLG1 = 0x10; TFLG1 = 0x08; TFLG1 = 0x10; TFLG1 = 0x08; TFLG1 = 0x00; TFLG1 = 0xFF; TSCR &= ~0x80; //812A4 TSCR1&= ~0x80; //9S12C32 TSCR = 0x80; //812A4 TMSK2 = 0; //812A4 TMSK2 = 0; //812A4 TSCR1 = 0x80; //9S12C32 TSCR2 = 0; //9S12C32 TC3 = TCNT+1000; // ritual TC4 = TCNT+1000; // ritual TC3 = TC3+1000; // ISR TC4 = TC4+1000; // ISR</pre>
Τ)	TMSK1 $ = 0x08;$	//812A4	KK)	TC4 = TC4+1000; // ISR
U)	TMSK1 $ = 0x10;$		(ىايا	None of the above

(5) Question 2. The objective of this question is to interface a solenoid to PHO using a Darlington transistor. Choose the appropriate circuit for the interface. You may assume PH0 is an output pin of the 6812. PLACE THE CORRECT LETTER ON THE ANSWER PAGE.

(5) Question 3 Assume you have a buffered input interface. In other words, this is a producerconsumer problem When new input is ready, it generates an interrupt, and the new data is **Put** into a FIFO queue. The foreground thread (main program) will **Get** data out of the FIFO queue and process it. Debugging instruments placed on the FIFO have recorded the condition that the FIFO is usually full. What term best describes this situation?

PLACE THE CORRECT LETTER ON THE ANSWER PAGE.

A) I/O bound.B) CPU bound.C) FIFO bound.D) Reentrant.

E) Nonreentrant.F) Single-threaded.G) Critical section.H) Real-time system.

(10) Question 4. A low-current LED can be interfaced directly to the 6812 as shown below

The LED voltage is 2V and its current is 2 mA.

Part a) For this interface to work, which inequality must be true? *PLACE THE CORRECT LETTER ON THE ANSWER PAGE*.

$\mathbf{A}) \mathbf{I}_{\mathrm{IH}} > 2\mathrm{mA}$	E) $I_{IH} < 2mA$
B) $I_{IL} > 2mA$	F) $I_{IL} < 2mA$
C) $I_{OH} > 2mA$	G) I _{OH} < 2mA
D) $I_{OL} > 2mA$	H) $I_{OL} < 2mA$

Part b) Assuming the V_{OH} of the 6812 is approximately +5V, Choose the appropriate resistor value for the interface. *GIVE YOUR ANSWER IN OHMS*.

(5) Question 5. An analog signal is sampled at 1000 Hz using an ADC. According to fundamental mathematical principles, what range of frequencies is reliably represented in the digital signals?

(35) Question 6. You will implement this traffic light finite state machine. Each state has a 4-bit output value, and four next state pointers. The sequence is output, wait, input, next.

The hardware uses 6 bits of PORTT, so your software will configure PORTT bits 7,6 to be inputs and bits 3-0 to be output. *For this question, don't worry about being friendly.*

You will write two regular C functions, **ritual()** and **machine()**. My **main** program calls your **ritual()** once before I enable interrupts. My RTI **handler** will call your **machine()** every 1 second. You are not allowed to change my code.

```
unsigned short Count;
void interrupt 7 handler(){ // interrupts at 244Hz
  CRGFLG = 0x80;
                  // acknowledge
  if((--Count)==0){ // every 1 second
    machine();
                  // your program
    Count = 244;
  }
}
void RTI Init(void){
  CRGINT = 0 \times 80; // arm
  RTICTL = 0x33; // period=250ns*4096*4=4096us or 244.14Hz
  Count = 244; // interrupt counter
  asm cli
}
void main(void){
  ritual()
                // your program
  RTI_Init();
  for(;;){
  }
}
Part a) I am giving you the specification of the linked data structure. You can not change this
specification. Show the C code that defines this finite state machine
const struct State {
  unsigned char out;
                                   // 4-bit output
  unsigned short wait;
                                  // time in seconds to wait
  const struct Node *next[4];}; // Next if 2-bit input is 0-3
```

Part b) You may add global variables as needed.

typedef const struct State StateType;

Part c) Write the **ritual()** function. Among other things the ritual should initialize the PORTT direction register, **DDRT** and set the initial state to **north**.

Part d) Write the **machine()** function that implements the FSM. In particular, you will perform input and output using **PORTT**. Since this is executed in the background, no backwards jumps (**do while**, **while**, or **for**) are allowed.

If you combine my C code that I put on this page with your code that you place in parts a,b,c,d, it will constitute the entire software system to run this FSM.

Jonathan W. Valvano	First:	Last:
April 7, 2004, 1:00pm-	1:50pm. This is a closed	book exam. You must put your answers on the boxes
on the last two pages or	nly. You have 50 minutes	, so please allocate your time accordingly. <i>Please read</i>
the entire quiz before s	-	
	one answer A-LL for each	h. (4 points each)
	Arms output compare 4.	
Acknowl	edges output compare 3.	
	Enables interrupts.	
	Disables interrupts.	
	Disables interrupts.	
Dis	sarms output compare 3.	
	I I I I I I I I I I I I I I I I I I I	
Clears all	8 output compare flags.	
Specifies chan	nel 4 is output compare.	
Specifies the per	iod of the OC3 interrupt	
A ativata a TON	E time on at the factors note	
Activates TCN	Γ timer at the fastest rate	
Specifies the time of	of the first OC3 interrupt	
Specifies the time of	in the first OCS interrupt	
(5) Question 2.	Letter A-H	
(5) Question 3.	Letter A-H	
(5) Question 4a.	Letter A-H	
(5) Question 4b.		
Resistor value, in Ω		
Resistor value, III S2		
(5) Question 5.	Minimum frequency=	
frequency range in Hz	Tequency-	
The factory range in The		
	Maximum frequency=	

(10) Question 6a. Show the C code that defines the finite state machine in ROM.

(5) Question 6b. Show the C code that defines necessary RAM-resident global variables.

(5) Question 6c. Show the ritual() function that initializes the finite state machine.

(15) Question 6d. Show the machine() function that executes the finite state machine.