

First:

Last:
April 6, 2023, 12:30 to $1: 45 \mathrm{pm}$. Open book, open notes, calculator (no, phones, devices with wireless communication). No devices with screens larger than a calculator or cell phone (basically, the screen cannot be visible to other students).
(10) Question 1. An output device is interfaced to the microcontroller using SPI. The TM4C123 uses Freescale mode with the TM4C123 as master. The following waveforms were captured with the logic analyzer. Your task is to reverse engineer the SPI mode.

(3) Part a) What value did the software write to DSS during initialization?
(2) Part b) What value did the software write to SPO during initialization? Idle clock is high
(2) Part c) What value did the software write to SPH during initialization? Master Output changes on fall of clock, slave clocks on rise
(3) Part d) What data value is being transmitted (in hexadecimal)?

Look at data bits on rising edge, 7-bit 0100100

7 bits (DSS=6)
\square

$\mathrm{SPH}=1$

0x24
(10) Question 2. Consider this SPI interface where the distance between the microcontroller and the device is 2 meters. Assume a velocity factor of 0.6 . What is the time delay between clock output at the microcontroller and SSIORx data input at the microcontroller just due to the 2-meter cable. Neglect capacitance in cable.

(10) Question 3. We will store the value +1.00 V with the integer +8 . The range of values are -16 V to +15.875 V , what are the precision and resolution of this fixed-point number system? Give units for each.

```
Smallest -16V/0.125V = -128
Largest +15.875V /0.125V = +127
Precision = 8 bits
```

Solve this first
Resolution of the system $=1.00 \mathrm{~V} /+8=0.125 \mathrm{~V}$
(20) Question 4. You are given a GPIO input on PB0. Create a GPIO output on PB1 with a frequency 4 times slower. E.g., if the frequency of PB0 is 1 kHz , make the frequency of PB1 250 Hz . The frequency of PB 0 can range from 0 to 10 kHz .

You do not write DisableInterrupts or EnableInterrupts; otherwise, you write all the software needed. The main program is fixed and cannot be changed. Don't worry about priority int main(void) \{

DisableInterrupts(); // running at 16 MHz
Init(); // you write this
EnableInterrupts();
while(1) \{
\}
\}
Part a) Write your Init

```
uint32 t Count = 0;
void E\overline{d}geCounter Init(void) {
        SYSCTL_RCGCGPIO_R |= 0x02;// clk
        Count = 0;
        GPIO_PORTB_DIR_R &= ~0x01;// in
        GPIO_PORTB_DIR_R |= 0x02; // out
        GPIO_PORTB_DEN_R |= 0x03; // en
        GPIO_PORTB_IS_R &= ~0x01; // edge
        GPIO_PORTB_IBE_R &= ~0x01;
// not both edges
    GPIO PORTB IEV R = 0x01; //rising
    GPIO_PORTB_ICR_R = 0x01; // ack
    GPIO_PORTB_IM_䟹 |= 0x01; // arm
    NVIC_ENO_R= 2; // enable NVIC
}
```

Part b) Write your ISR

```
void GPIOPortB Handler(void) {
    GPIO_PORTB_ICR_R = 0x01; // ack
    Count+++;
    if(Count & 0x01){ // every other
            GPIO_PORTB_DATA_R ^= 0x02;
// toggl\overline{e}
    }
}
// alternate solution
// Bottom bits of Count in binary
// 000
// 001
// 010
// 011
// 100
// 101
// 110
// 111
// PB1 is Bit 1 of Count
void GPIOPortB_Handler(void) {
    GPIO_PORTB_I\overline{CR_R = 0x01; // ack}
    Coun\overline{t}++;
    PB1 = Count; // bit specific
}
```

(10) Question 5. A sensor has analog outputs V_{1} and V_{2}. The range is $0<\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)<0.03 \mathrm{~V}$.

Design an analog circuit to interface this sensor to the 0 to 3 V at the ADC on the TM4C123. Show all chip numbers and resistors. Show equations used to define resistance values. No LPF is needed here.

Gain is $3 / 0.03=100$, differential with large gain needs instrumentation amp. The fact that the sensor is a resistance bridge means the input impedance of the amp must be large. Vref $=0$
$\begin{aligned} \mathrm{G}=200 \mathrm{k} / \mathrm{Rg}+5, \mathrm{Rg}=200 \mathrm{k} / 95= & 2.105 \mathrm{k} \\ & +3.3 \mathrm{~V}\end{aligned}$

(10) Question 6. Consider this analog filter. First, write the complex impedances of the two capacitors $\left(Z_{1}\right.$ and $\left.Z_{2}\right)$ in terms of $j 2 \pi f$, where f is the frequency of the input V_{in}, and j is the sqrt(-1). Next, use these impedances to characterize the filter as low-pass, high-pass, or band-pass. C_{1} is much
 bigger than C_{2}.

This architecture is very similar to the microphone circuit in Lab 9
$\mathrm{Z}_{1}=1 /\left(\mathrm{j} 2 \pi \mathrm{fC}_{1}\right)$
$\mathrm{Z}_{2}=1 /\left(\mathrm{j} 2 \pi \mathrm{fC}_{2}\right)$
No need to reduce, Z is the parallel combination of R and C_{2},
$\mathrm{Z}=\mathrm{R} \| \mathrm{C}_{2}=\mathrm{R}^{*} \mathrm{Z}_{2} /\left(\mathrm{R}+\mathrm{Z}_{2}\right)$
$\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}=\mathrm{Z} /\left(\mathrm{Z}+\mathrm{Z}_{1}\right)$
At $f=0, Z_{1}$ is infinite and Z_{2} is infinite, $Z=R$, so $V_{\text {out }}=0$, so $V_{\text {out }} / V_{\text {in }}=0$
At $f=$ infinite, Z_{1} is 0 and Z_{2} is $0, Z=0$, so $V_{\text {out }}=0$, so $V_{\text {out }} / V_{\text {in }}=0$
Let $f_{1}=1 /\left(2 \pi R C_{1}\right)$. Let $f_{2}=1 /\left(2 \pi R C_{2}\right)$, with f_{1} much smaller than f_{2}
For $f_{1} \ll f \ll f_{2}, Z_{1}$ is 0 and Z_{2} is infinite, $Z=R$, so $V_{\text {out }} / V_{\text {in }}=1$
High pass filter with cutoffs $f_{1} f_{2}$.
(15) Question 7. Implement the following digital filter: $\mathrm{y}(\mathrm{n})=0.75^{*} \mathrm{y}(\mathrm{n}-1)+0.25^{*} \mathrm{x}(\mathrm{n})$, where $\mathrm{y}(\mathrm{n})$ is stored in global \mathbf{y}, and $x(n)$ is stored in global x. Use only integer addition and integer shift.
uint32_t x,y;

```
void A\overline{DCOSeq0_Handler(void) {}
    ADCO_ISC_R = 0x01; // acknowledge ADC sequence 0 completion
    x = ADC0_SSFIFOO_R; // input x (n)
    // y(n)=0.75*y(n-1)+0.25*x (n)
    // y=(3*y+x)/4 where right y is y(n-1) and left y is y(n)
    y = (y+y+y+x)>>2;
    // we move shift right to last operation to improve accuracy
```

\}
(15) Question 8. REF is 3.00 V for this 3-bit DAC. What is the maximum DAC output voltage? Show your work. Hint: solve for the current in the right-most 2 R for digital input equal to 7 .

Use Law of Superposition.
Study basis elements: $\operatorname{In}=001,010,100$.
For every case, the resistance from REF to ground is $3 R$. If digital input is 1 , the injected current at the switch is REF/(3R)
$\mathrm{In}=001$, current divided in half three times, $\mathrm{I}_{\text {out }}=\mathrm{REF} /(24 \mathrm{R}), \mathrm{V}_{\text {out }}=\mathrm{REF} / 12$,
$\mathrm{In}=010$, current divided in half two times, $\mathrm{I}_{\text {out }}=\mathrm{REF} /(12 \mathrm{R}), \mathrm{V}_{\text {out }}=\mathrm{REF} / 6$,
$\mathrm{In}=100$, current divided in half once, $\mathrm{I}_{\text {out }}=\mathrm{REF} /(6 \mathrm{R}), \mathrm{V}_{\text {out }}=\mathrm{REF} / 3$,
Law of Superposition
$\mathrm{In}=111, \mathrm{~V}_{\text {out }}=\mathrm{REF} / 3+\mathrm{REF} / 6+\mathrm{REF} / 12=1+1 / 2+1 / 4=7 / 4 \mathrm{~V}=1.75 \mathrm{~V}$

