EE382N-4 Embedded Systems Architecture

The ARM Architecture and ISA

Mark McDermott

With help from our good friends at ARM

M

EE382N-4 Embedded Systems Architecture

ARM Processor Frequencies (max)

1200

1000

800

Freq (MHz) 600
400 1

200

N-4 Embedded Systems Architecture
Agenda

Architecture Overview
Family of cores
Pipeline
Datapath
AMBA Bus
Intelligent Energy Manager

Instruction Set Architecture

- THRE EE382N-4 Embedded Systems Architecture
The Original Instruction Pipeline

The ARM uses a pipeline in order to increase the speed of the
flow of instructions to the processor.
Allows several operations to be undertaken simultaneously, rather than

serially.
PC FETCH Instruction fetched from memory

PC-4 DECODE Decoding of registers used in instruction

Register(s) read from Register Bank
PC-8 EXECUTE Shift and ALU operation
‘Write register(s) back to Register Bank

Rather than pointing to the instruction being executed, the PC
points to the instruction being fetched.

- THRE EE382N-4 Embedded Systems Architecture

ARM Architecture Family

N-4_ Embedded Systems Architecture

Pipeline changes for ARM9TDMI

ARM7TDMI
ARM decode o

Instruction Thumb—ARM Reg g Ay Reg

decompress Read Write
Reg Select
FETCH DECODE EXECUTE
ARMITDMI
ARM or Thumb
Instruction Inst Decode Shift + ALU Memory
Access

eg eg
Decode Read
FETCH DECODE EXECUTE MEMORY WRITE

M

EE382N-4 Embedded Systems Architecture

Pipeline changes for ARM10 vs. ARM11 Pipelines

ARM10

L

| wiy ey [
FETCH ISSUE DECODE EXECUTE MEMORY WRITE
ARM11

AU saturate

MAC | MAC | |MAC | Wit
1 2 3 back

EE382N-4 Embedded Systems Architecture

ARM 9E Cores

ARMSE is based on the ARMITDMI core
Core implementation differences
Architecture V5TE support
Single cycle 32x16 multiplier implementation
Embedded-ICE Logic RT

ARM926EJ-S / ARM9AGE-S
Configurable Instruction and Data caches
Instruction and Data TCM Interfaces
AHB bus interface
ARM926EJ-S has MMU
ARM946E-S has MPU

ARM966E-S

Instruction and Data TCM Interfaces
No Cache or MPU/MMU

am

ammmnnmms

|
o
[l
[l
[l
[l
o
o
Fi
Fi
|

d

(7 TR
ARM 7TDM Core

| THRE
ARM 11 MP-Core

Synthesizable
1-4 MP11 processors
With associated timers & interfaces
With or without VFP11 coprocessor

ARM v6K compliant

Configurable interrupt inputs
0-224in steps of 32
Programmable distribution to MP11s

Support for SMP or AMP
MESI-based cache coherency
1 or 2 AXl interfaces to level 2
64-bit data buses

IEM Ready

EE382N-4 Embedded Systems Architecture

EE382N-4 Embedded Systems Architecture

—mana n.nl.ln;r.: nin mm=

L

Program Trace using ETMs 5

ARM 9TDMI Core

EE382N-4 Embedded Systems Architecture.

Cortex A8 Core

13-Stage Inleger Prpeline

N-4_ Embedded Systems Architecture

10-Stage NEON Pipoline

MMM MY N RO e NS N

T T T TS TA T T Te MTH T2 T

[rer—

[T TN EE382N-4 Embedded Systems Architecture
AMBA Introduction

Advanced Microcontroller Bus Architecture (AMBA), created by
ARM as an interface for their microprocessors.

AMBA 2.0 released in 1999, includes APB and AHB

AMBA 3.0 released in 2003, includes AXI

Easy to obtain documentation (free download) and can be used
without royalties.

Very common in commercial SoC’s
(e.g. Qualcomm Multimedia Cell-phone SoC)

M

EE382N-4 Embedded Systems Architecture

EE382N-4 Embedded Systems Architecture

Typical AMBA configuration
‘High Performance
ARM processor
High
Bandwidth AHB
External

High Performance
Pipalined

Multiple Bus Masters

EE382N-4 Embedded Systems Architecture.

Wt Dt

Frad Data

AHB Basic Signal Timing

| Adovess Phage | DotaPraeh | g gy |
[—— Address Prase B, D00

HCLK —

HADDR !K K=

EE382N-4 Embedded Systems Architecture
Intelligent Energy Manager (IEM)
Intelligent Energy Manager works by changing voltage and clock

rate to match the performance required to complete the task

Can yield a quadratic saving in energy usage for a given task
Better than just clock gating/scaling
Saving in leakage current from voltage reduction

P = GV + Vagliou E = [Pdt

where Cw,7f is the dynami due to
where vy, s the static component due to leakage
where E=ENERGY

M

EE382N-4 Embedded Systems Architecture.

1

T

Energy

Controller

aEC) I

rry basg § been
1

Veitaga & nlnq ettt
H i
Dynamic
Voltage
Controller
(DvC)

* Hardwane Parfarmance Menitor (optional

M

EE382N-4 Embedded Systems Architecture

Voltage & Frequency Scaling

Lowering clock frequency introduces more slack into register-to-
register timing

Slack can be utilized by lower voltage for system causing Tc to
increase but energy usage to decrease

e iniplgiyid i
D D i 1y Oy ER -~

slack

i _I_I_I__l_ and

slack

EE382N-4 Embedded Systems Architecture
Clocking

Dynamically varying the clock frequency for those tasks which
have margin can result in additional energy savings.

cue I MUYV A

IDLE TIME

o _f:m_"l.i’]_ DU UTUUUUUL

M

EE382N-4 Embedded Systems Architecture.

Instruction Set Architecture

EE382N-4 Embedded Systems Architecture

Main features of the ARM Instruction Set

All instructions are 32 bits long.
Most instructions execute in a single cycle.
Most instructions can be conditionally executed.

Aload/store architecture
Data processing instructions act only on registers
Three operand format
Combined ALU and shifter for high speed bit manipulation
Specific memory access instructions with powerful auto-indexing addressing
modes.
32 bit and 8 bit data types
and also 16 bit data types on ARM Architecture va.
Flexible multiple register load and store instructions

Instruction set extension via coprocessors
Very dense 16-bit compressed instruction set (Thumb)

@

EE382N-4 Embedded Systems Architecture
Thumb

Thumb is a 16-bit instruction set
Optimized for code density from C code
Improved performance from narrow memory
Subset of the functionality of the ARM instruction set

Core has two execution states — ARM and Thumb
Switch between them using BX instruction

Thumb has characteristic features:
Most Thumb instruction are executed unconditionally
Many Thumb data process instruction use a 2-address format
Thumb instruction formats are less regular than ARM instruction formats, as
a result of the dense encoding.

M

EE382N-4 Embedded Systems Architecture.

Izbit 16-bit 16:-bit with
32-bit stack

Memary width {zerc wait state)

M

[LT TN EE382N-4 Embedded Systems Architecture

Thumb-2 Instruction Set

EEMBC Analysis - Performance
Second generation of the Thumb sy

architecture
Blended 16-bit and 32-bit instruction set
25% faster than Thumb
30% smaller than ARM
Increases performance but
maintains code density

Maximizes cache and tightly
coupled memory usage

EE382N-4 Embedded Systems Architecture
The ARM Register Set
Current Visible Registers
Abort Mode
Banked out Registers

User IRQ svc Undef

3(sp) W r13(sp) | ra3(sp) 113 (sp)
r14.(r) 114 (Ir) 114 (In) 14 (Ir)

115 (pc)

[_spst | _spsr | ISGsa|

[LT TN EE382N-4 Embedded Systems Architecture
Processor Modes

The ARM has six operating modes:
User (unprivileged mode under which most tasks run)

FIQ (entered when a high priority (fast) interrupt is raised}

IRQ {entered when a low priority {normal) interrupt is raised)

Supervisor {entered on reset and when a Software Interrupt instruction is
executed)

Abort {used to handle memory access viclations)

Undef (used to handle undefined instructions)

ARM Architecture Version 4 adds a seventh mode:
System {privileged mode using the same registers as user mode}

M

[LT TN EE382N-4 Embedded Systems Architecture

Register Organization Summary

User FIQ IRQ svc Undef Abort

Thumb state
Low register

Thumb state
1 High register:
12

113 (sp) 13 (sp) 113 (sp) 113 (sp)

a0 a0 a0 a0

115 (pc)

Note: System mode uses the User mode register set

[LT TN EE382N-4 Embedded Systems Architecture
The Registers

ARM has 37 registers in total, all of which are 32-bits long.

1 dedicated program counter

1 dedicated current program status register

5 dedicated saved program status registers

30 general purpose registers
However these are arranged into several banks, with the
accessible bank being governed by the processor mode. Each
mode can access

a particular set of r0-r12 registers

a particular r13 (the stack pointer) and r14 (link register)

r15 (the program counter)

cpsr (the current program status register)

And privileged modes can also access
a particular spsr (saved program status register)

M

[LT TN EE382N-4 Embedded Systems Architecture

Accessing Registers using ARM Instructions

ed. Py

No br of currently
All instructions can access r0-r14 directly.
Most instructions also allow use of the PC.

registers.

Specific instructions to allow access to CPSR and SPSR.

Note : When in a privileged mode, it is also possible to load-store
the (banked out) user mode registers to or from memory.

M

EE382N-4 Embedded Systems Architecture

EE382N-4 Embedded Systems Architecture

The Program Status Registers (CPSR and SPSRs)

£

B
FEEYE

s a o
L e B T
‘IF‘T‘MDCIE

Copies of the ALU status flags (latched if the
instruction has the "S" bit set).

* Interrupt Disable bits.
I =1, disables the IRQ.
F =1, disables the FIQ.

* Condition Code Flags
N = Negative result from ALU flag.
Z = Zero result from ALU flag.
C = ALU operation Carried out

V = ALU operation oVerflowed * TBit (Architecture v4T only)

T =0, Processor in ARM state
* Mode Bits T=1, Processor in Thumb state

M[4:0] define the processor mode.

M

EE382N-4 Embedded Systems Architecture

Condition Flags

Logical
Flag
Negative No meaning Bit 31 of the result has been set
(N="1) Indicates a negative number in
signed operations
Zero Result is all zeroes Result of operation was zero
(z=1)
Carry After Shift operation Result was greater than 32 bits
(c=1) 1’ was left in carry flag
overflow No meaning Result was greater than 31 bits
(v="1) Indicates a possible corruption of
the sign bit in signed
numbers

M

EE382N-4 Embedded Systems Architecture
The Program Counter (R15) and Link Register (R14)

When the processor is executing in ARM state:
Allinstructions are 32 bits in length
All instructions must be word aligned
Therefore the PC value is stored in bits [31:2] with bits [1:0] equal to zero (as
instruction cannot be halfword or byte aligned).

R14 is used as the subroutine link register (LR) and stores the
return address when Branch with Link operations are performed,
calculated from the PC.

Thus to return from a linked branch:
MOV r15,r14
or
MOV pe,Ir

Exception Handling and the Vector Table

When an exception occurs, the core:
Copies CPSR into SPSR_<mode>
Sets appropriate CPSR bits 0x00000000 Reset
If core implements ARM Architecture 4T and is
currently in Thumb state, then
ARM state is entered.

0xa0000004 | Undefined Instruction

000000008 | _ Software Interrupt

Mode field bits ox0000000¢ | Prefetch Abort

Interrupt disable flags if appropriate. 0x00000010 Data Abort
Maps in appropriate banked registers 0x00000014 Reserved
Stores the “return address” in LR_<mode> 0400000018 IRQ
Sets PC to vector address 0x0000001C FIQ

To return, exception handler needs to:
Restore CPSR from SPSR_<mode>
Restore PC from LR_<mode>

@

EE382N-4 Embedded Systems Architecture

ARM Instruction Set Format

BEBBEBBEEERBEREREEEERE BN EE A RN R
Condtion 0 0 1 ovco0 5 " oreaano-2 Oat prcessing
Condition © 00000 A5 " W 1001 am oty
Condition ©0 0 0 0 1 U A S RAHIGH Rd LOW. Rs 1001 Rm. Long Multiply
Conditon © 0010800 n W 00001001 swap
Condition 0 1 1 P U B WL Re Rd OFFSET Load/Store - Byte/Word
Condn 1007 UB WL ReGTER ST Loadfsore Mulile
Conditon 0 0 0 P UL WL R ORSEL A s H 1 OWSET2 Halwerd Tensterimmof
Conditon © 0 0 P UO WL n W 0000 1S HI Am ltwordTanseregon
Condition 10 1 1 Je— sranch
Condifn 000 100101111111111110001 D
Conditon 110 P U N WL e coem orrser Commocesson oaTAXTER
Gordin 1110 Opi G Cld CMum OP2 O Cim COPROCESSORDATAOP
Condtion w1 L o W Mm o2 1 Cm COPROCESSORRESXFR
Condition 1111 swnovBER Soware nemupt

M

EE382N-4 Embedded Systems Architecture
Conditional Execution

Most instruction sets only allow branches to be executed
conditionally.

However by reusing the condition evaluation hardware, ARM
effectively increases number of instructions.
All instructions contain a condition field which determines whether the CPU
will execute them.
N instructions 1 cycle.
Can’t collapse the instruction like a NOP. Still have to complete cycle so as to allow
fetching and decoding of the following instructions.

This removes the need for many branches, which stall the
pipeline (3 cycles to refill).
Allows very dense in-line code, without branches.
The Time penalty of not executing several conditional instructions is
frequently less than overhead of the branch
or subroutine call that would otherwise be needed.

EE382N-4 Embedded Systems Architecture

The Condition Field

2 1[1
EEEEEEEEEEEBHHnnn!lll!l!ll! (T2
Rn R OPERAND 2

Conditn 0 0 1 OPCODE S et processing
| —
— 1001 = LS - C clear or Z (set unsigned lower
0000 = EQ - Z set (equal) or same)
000: E - Z clear (not equal) 1010 = GE - N set and V set, or N clear and V'
0010 = HS / CS - C set (unsigned higher or clear (>or =)
same) 1011 = LT - N setand V clear, or N clear and
0011 = L0 / CC - C clear (unsigned lower) Viset (=)

0100 = MI -N set (negative)

L - N clear (positive or zero)

S -V set (overflow)

0111 = VC - V clear (no overflow)

1000 = HI - C set and Z clear (unsigned
higher)

1100 = GT - Z clear, and either N set and V/
set, or N clear and V set (=)

1101 = LE - Z set, or N set and V clear,or N
clear and V set (<, or =)

1110 = AL - always

1111 = NV - reserved.

M

EE382N-4 Embedded Systems Architecture

Branch instructions (1)

Branch : B{<cond>} label
Branch with Link : BL{<cond>} sub_routine_label
EBEHEEEEEREEBREEEREEEBE R AN
o 7 h 7 il 3
Condition 1 0 1 L BRANCH OFFSET

ranch
= Branch with link

\—I:l L winkbit
Condition field
The offset for branch instructions is calculated by the assembler:
By taking the difference between the branch instruction and the target address
minus 8 (to allow for the pipeline).
This gives a 26 bit offset which is right shifted 2 bits (as the bottom two bits are
always zero as instructions are word — aligned) and stored into the instruction
encoding.
This gives a range of + 32 Mbytes.

Eﬂd

EE382N-4 Embedded Systems Architecture

Using and updating the Condition Field

To execute an instruction conditionally, simply postfi;
condition:
For example an add instruction takes the form:
ADD r0,r1,r2 ; r0 = r1 + 12 (ADDAL)
To execute this only if the zero flag is set:
ADDEQr0,r1,r2 ; If zero flag set then...
G t0=rl4r2

it with the appropriate

By default, data processing operations do not affect the condition flags (apart
from the comparisons where this is the only effect). To cause the condition
flags to be updated, the S bit of the instruction needs to be set by postfixing
the instruction (and any condition code) with an “S”.
For example to add two numbers and set the condition flags:
ADDS r0,r1,r2 ;r0=ri+r2
and set flags

M

EE382N-4 Embedded Systems Architecture
Branch instructions (2)

When executing the instruction, the processor:

shifts the offset left two bits, sign extends it to 32 bits, and adds it to PC.
Execution then continues from the new PC, once the pipeline has
been refilled.

The "Branch with link" instruction implements a subroutine call
by writing PC-4 into the LR of the current bank.
i.e. the address of the next instruction following the branch with link
(allowing for the pipeline).
To return from subroutine, simply need to restore the PC from
the LR:
MOV pc, Ir
Again, pipeline has to refill before execution continues.

M

EE382N-4 Embedded Systems Architecture.

Conditional Execution and Flags

ARM instructions can be made to execute conditionally by postfixing them with the
appropriate condition code field.
This improves code density and performance by reducing the number of forward
branch instructions.

CWP 3,40 CWP r3,#0
BEQ skip ADDNE rO,r1,
ADD rO,rl,r2

skip

By default, data processing instructions do not affect the condition code flags but the
flags can be optionally set by using “S”. CMP does not need “S”.
loop

SUBS r1,rl,#1 <—decrementrland setflags
BNE loop < 1 if Z flag clear then branch

M

[LT = =TENE EE382N-4 Embedded Systems Architecture.
Branch instructions (3)

The "Branch" instruction does not affect LR.

Note: Architecture 4T offers a further ARM branch instruction, BX
See Thumb Instruction Set Module for details.

BL <subroutine>
Stores return address in LR
Returning implemented by restoring the PC from LR
For non-leaf functions, LR will have to be stacked

funcl func2
STMFD spl,{regs,r}
BLfunct BLfunc2
i :IDMFIJ spl{regs,pc} :
MOV pc, Ir

(LT TN EE382N-4 Embedded Systems Architecture

Conditional Branches
Branch I Normal uses
B Unconditional Always take this branch
BAL Always Always take this branch
seq Equal Comparison equal or zero result
BNE Not equal Comparison not equal or non-zero result
soL Plus Resuit positive or zero
BMI Minus Result minus or negative
BCC Carry clear Arithmetic operation did not give carry-out
BLO Lower Unsigned comparison gave lower
BCS Carry set Arithmetic operation gave carry-out
o Higher or same Unsigned comparison gave higher or same
BVC Overflow clear Signed integer operation; no overflow occurred
BVS Overflow set Signed integer operation; overflow occurred
BGT Greater than Signed integer comparison gave greater than
BGE Greater or equal Signed integer comparison gave greater or equal
BLT Less than Signed integer less than
[Less or equal Signed integer comparison gave ess than or squal
BHI Higher Unsigned comparison gave higher
ats Lower or same Unsianed comparison gave lower or same

M

EE382N-4 Embedded Systems Architecture

EE382N-4 Embedded Systems Architecture

Data processing Instructions

Largest family of ARM instructions, all sharing the same
instruction format.
Contains:
Arithmetic operations
Comparisons (no results - just set condition codes)
Logical operations
Data movement between registers
Remember, this is a load / store architecture
These instruction only work on registers, NOT memory.
They each perform a specific operation on one or two operands.
First operand always a register - Rn
Second operand sent to the ALU via barrel shifter.

We will examine the barrel shifter shortly.

M

EE382N-4 Embedded Systems Architecture

Comparisons

The only effect of the comparisons is to update the condition
flags. Thus no need to set S bit.

Operations are:
cmpP operand1 - operand2 ; Compare
CMN operandl + operand2 ; Compare negative
TST operandl AND operand2 ; Test
TEQoperandl EOR operand2 ; Test equivalence

Syntax:

<Operation>{<cond>} Rn, Operand2
Examples:

cmP ro, rl

TSTEQ r2, #5

Logical Operations

Operations are:

AND operandl AND operand2

EOR operandl EOR operand2

ORR operandl OR operand2

ORN operandl NOR operand2

BIC operandl AND NOT operand2 [ie bit clear]

Syntax:
o .

{<cond>}{s} Rd, Rn, Operand2

Examples:
AND r0,r1,r2
BICEQr2, 13, #7
EORS r1,r3,r0

EE382N-4 Embedded Systems Architecture.

Arithmetic Operations

Operations are:

ADD operand1 + operand2 ; Add

ADC operand1 + operand2 + carry ; Add with carry

SuB operand1 - operand2 ; Subtract

SBC operandl - operand2 +carry -1 ; Subtract with carry

RSB operand2 - operandl ; Reverse subtract

RSC operand2 - operandl + carry -1 ; Reverse subtract with carry
Syntax:

<0 ion>{<cond>}{S} Rd, Rn, O d2
Examples

ADD0,r1,r2
SUBGT 3, r3, #1
RSBLES r4, r5, #5

M

EE382N-4 Embedded Systems Architecture
Data Movement

Operations are:
MOV operand2
MVN NOT operand2

Note that these make no use of operand1.

Syntax:
<0 ion>{<cond>}{s} Rd, O d2
Examples:
Mov ro, r1
MOVs r2, #10
MVNEQ r1,#0

@ d =

[N EE382N-4 Embedded Systems Architecture

The Barrel Shifter

The ARM doesn’t have actual shift instructions.

Instead it has a barrel shifter which provides a mechanism to
carry out shifts as part of other instructions.

So what operations does the barrel shifter support?

M

EE382N-4 Embedded Systems Architecture

Barrel Shifter - Rotations

Rotate Right (ROR] Rotate Right

Similar to an ASR but the bits
wrap around as they leave the
LSB and appear as the MSB.
eg. ROR #5

Note the last bit rotated is also
used as the Carry Out.

Rotate Right Extended (RRX]
This operation uses the CPSR C
flag as a 33rd bit.

Rotates right by 1 bit. Encoded
as ROR #0

Rotate Right through Carry

EE382N-4 Embedded Systems Architecture

Barrel Shifter - Left Shift
Shifts left by the specified amount (multiplies by powers of two)

e.g.
LSL#5 => multiply by 32

Logical Shift Left (LSL)

<; °

EE382N-4 Embedded Systems Architecture

Using the Barrel Shifter: The Second Operand

Register, optionally with shift
Operand Operand = === | gperation applied.
1 \ Shift value can be either be:
5 bit unsigned integer
\ Specified in bottom byte of
\ another register.

l M immediate value

> 8bit number
> Can be rotated right
through an even number
of positions.
Assembler will calculate
' rotate for you from

v

constant.

EE382N-4 Embedded Systems Architecture
Barrel Shifter - Right Shifts

Logical Shift Right

o ommson

zero shifted in

Logical Shift Right (LSR]

Shifts right by the specified
amount (divides by powers of
two) e.g.

LSR #5 = divide by 32
Arithmetic Shift Right

metic Shift Right (ASR
Shifts right (divides by powers of
Destination n

two) and preserves the sign
operations. e.g. Sign bit shifted in

bit, for 2's complement

ASR #5 = divide by 32

M

[T TS EE382N-4 Embedded Systems Architecture

Second Operand : Shifted Register

The amount by which the register is to be shifted is contained in

either:

the immediate 5-bit field in the instruction
NO OVERHEAD
Shift is done for free - executes in single cycle.

the bottom byte of a register (not PC)
Then takes extra cycle to execute
ARM doesn’t have enough read ports to read 3 registers at once.
Then same as on other processors where shift is
separate instruction.

If no shift is specified then a default shift is applied: LSL #0

i.e. barrel shifter has no effect on value in register.

Result

M

[T =T EE382N-4 Embedded Systems Architecture
Second Operand: Using a Shifted Register

Using a multiplication instruction to multiply by a constant means first loading
the constant into a register and then waiting a number of internal cycles for
the instruction to complete.

A more optimum solution can often be found by using some combination of
MOVs, ADDs, SUBs and RSBs with shifts.
Multiplications by a constant equal to a ((power of 2) * 1) can be done in one cycle.

MOV R2, RO, LSL #2 ; Shift RO left by 2, write to R2, (R2=R0x4)
ADD R9, RS, R5, LSL#3 ~ ;R9=R5+R5 x8 or R9=R5x9
RSBR9, RS, R5,LSL#3 ;RI=R5x8-R50rRI=R5x7

SUBRI10, R9, R8, LSR #4; R10=R9 - R8 / 16

MOV R12, R4, RORR3 ;R12 = R4 rotated right by value of R3

d

EE382N-4 Embedded Systems Architecture

Loading full 32 bit constants

Although the MOV/MVN mechanism will load a large range of constants into a
register, { this h will not the requil .
Therefore, the assembler also provides a method which will load ANY 32 bit
constant:

LDR rd,=numeric constant

If the constant can be constructed using either a MOV or MVN then this will be
the instruction actually generated.

Otherwise, the assembler will produce an LDR instruction with a PC-relative
address to read the constant from a literal pool.

LDR r0,=0x42 ;generates MOV r0,#0x42

LDR r0,=0x55555555 ;generate LDR r0,[pc, offset to DCD]

DCD 0x55555555 ; Constant in memory

As this mechanism will always generate the best instruction for a given case, it
is the recommended way of loading constants.

EE382N-4 Embedded Systems Architecture

Second Operand: Immediate Value (1)

There is no single instruction which will load a 32 bit immediate constant into
a register without performing a data load from memory.
All ARM instructions are 32 bits long
ARM instructions do not use the instruction stream as data.
The data processing instruction format has 12 bits available for operand2
If used directly this would only give a range of 4096.
Instead it is used to store 8 bit constants, giving a range of 0 - 255.

These 8 bits can then be rotated right through an even number of positions (ie
RORs by 0, 2, 4,..30).
This gives a much larger range of constants that can be directly loaded, though some
constants will still need to be loaded from memory.

M

EE382N-4 Embedded Systems Architecture
Multiplication Instructions

The Basic ARM provides two multiplication instructions.

Multiply
MUL{<cond>}{S} Rd, Rm, Rs ; Rd =Rm *Rs
Multiply Accumulate - does addition for free

MLA{<cond>}S} Rd, Rm, Rs,Rn

Restrictions on use:
Rd and Rm cannot be the same register
Can be avoided by swapping Rm and Rs around. This works because multiplication
is commutative.
Cannot use PC.

;Rd = (Rm * Rs) + Rn

These will be picked up by the assembler if overlooked.

Operands can be considered signed or unsigned
Up to user to interpret correctly.

d

EE382N-4 Embedded Systems Architecture
Second Operand: Immediate Value (2)

This gives us:

0-255 [0 - Oxff]

256,260,264,..,1020 [0x100-0x3fc, step 4, 0x40-0xff ror 30]

1024,1040,1056,..,4080 [0x400-0xff0, step 16, 0x40-0xff ror 28]

4096,4160, 4224,..,16320 [0x1000-0x3fc0, step 64, 0x40-Oxff ror 26]
These can be loaded using, for example:

MOV r0, #0x40, 26 ;=>MOV r0, #0x1000 (ie 4096)
To make this easier, the assembler will convert to this form for us if simply
given the required constant:

MOV r0, #4096 ;=>MOV r0, #0x1000 (ie 0x40 ror 26)
The bitwise complements can also be formed using MVN:

MOV r0, #OXFFFFFFFF ; assembles to MVN r0, #0

If the required constant cannot be generated, an error will
be reported.

M

[T =T EE382N-4 Embedded Systems Architecture
Multiplication Implementation

The ARM makes use of Booth’s Algorithm to perform integer
multiplication.
On non-M ARM: s this operates on 2 bits of Rs at a time.
For each pair of bits this takes 1 cycle (plus 1 cycle to start with).
However when there are no more 1’s left in Rs, the multiplication will early-
terminate.

Example: Multiply 18 and -1 : Rd = Rm * Rs

Rm 18 [0000[000b [0000[0000[0000]0000fobb1 00"

0010]18 Rs

LR U D D D
Rs A [i [i TR

17 cycles 4 cycles

1111] -1 Rm

Note: Compiler does not use early termination criteria to
decide on which order to place operands.

Extended Multiply Instructions

M variants of ARM cores contain extended multiplication
hardware. This provides three enhancements:
An 8 bit Booth’s Algorithm is used
Muiltiplication is carried out faster (maximum for standard instructions is now 5
cycles).
Early termination method imp d so that now
when all rem g bit sets contain
all zeroes (as with non-M ARMs), or
all ones.
Thus the previous example would early terminate in 2 cycles in both
cases.
64 bit results can now be produced from two 32bit operands
Higher accuracy.
Pair of registers used to store result.

M

EE382N-4 Embedded Systems Architecture

Multiply-Long & Multiply-Accumulate Long

Instructions are

MULL which gives RdHi,RdLo:=Rm*Rs

MLAL which gives RdHi,RdLo:=(Rm*Rs)+RdHi,RdLo
However the full 64 bit of the result now matter (lower precision
multiply instructions simply throws top 32bits away)

Need to specify whether operands are signed or unsigned
Therefore syntax of new instructions are:

UMULL{<cond>}S} RdLo,RdHi,Rm,Rs

UMLAL{<cond>}{S} RdLo,RdHi,Rm,Rs

SMULL{<cond>}{S} RdLo, RdHi, Rm, Rs

SMLAL{<cond>}{S} RdLo, RdHi, Rm, Rs
Not generated by the compiler.

Warning : Unpredictable on non-M ARMs.

M

Load / Store Instructions

The ARM is a Load / Store Architecture:
Does not support memory to memory data processing operations.
Must move data values into registers before using them.

This might sound inefficient, but in practice it isn’t:
Load data values from memory into registers.
Process data in registers using a number of data processing instructions
which are not slowed down by memory access.
Store results from registers out to memory.
The ARM has three sets of instructions which interact with main
memory. These are:
Single register data transfer (LDR / STR).
Block data transfer (LDM/STM).
Single Data Swap (SWP).

M

EE382N-4 Embedded Systems Architecture
Single register data transfer

The basic load and store instructions are:
Load and Store Word or Byte
LDR/STR / LDRB / STRB
ARM Architecture Version 4 also adds support for Halfwords and
signed data.
Load and Store Halfword
LDRH / STRH
Load Signed Byte or Halfword - load value and sign extend it to 32 bits.
LDRSB / LDRSH
All of these instructions can be conditionally executed by
inserting the appropriate condition code after STR / LDR.
e.g. LDREQB
Syntax:
<LDR|STR>{<cond>}{<size>} Rd, <address>

@

EE382N-4 Embedded Systems Architecture
Load and Store Word or Byte: Base Register

The memory location to be accessed is held in a base register

STR 0, [r1] ; Store contents of r0 to location pointed to
; by contents of r1.
LDRr2, [r1] ; Load r2 with contents of memory location

; pointed to by contents of rl.
0 Memory

Source T
Register |25 _]]

for STR '

1
Base inati
Register — 0x200 0x5 — [0S Register

for LDR

d

EE382N-4 Embedded Systems Architecture.

Load/Store Word or Byte: Offsets from the Base Register

As well as accessing the actual location contained in the base
register, these instructions can access a location offset from the
base register pointer.
This offset can be
An unsigned 12bit immediate value (ie 0 - 4095 bytes).
A register, optionally shifted by an immediate value
This can be either added or subtracted from the base register:
Prefix the offset value or register with ‘+’ (default) or *-’.
This offset can be applied:
before the transfer is made: Pre-indexed addressing
optionally auto-incrementing the base register, by postfixing the instruction with
an‘r.
after the transfer is made: Post-indexed addressing
causing the base register to be auto-incremented.

M

(LT TN EE382N-4 Embedded Systems Architecture

Load/Store Word or Byte: Pre-indexed Addressing
Example: STR r0, [r1,#12]

0
Memory Source
' for STR
Offset !
12 J]— oxaoc 0x5
r1
Base
Regiser —‘— 000

To store to location 0x1f4 instead use: STR r0, [r1,#-12]
To auto-increment base pointer to 0x20c use: STR r0, [r1, #12]!
If r2 contains 3, access 0x20c by multiplying this by 4:

STRr0, [r1, r2, LSL #2]

EE382N-4 Embedded Systems Architecture

Example Usage of Addressing Modes

Imagine an array, the first element of which is pointed to by the contents of r0.

If we want to access a particular element,
then we can use pre-indexed addressing:
rlis element we want.
LDR r2, [r0, r1, LSL #2]

element

Pointer to 2 8
If we want to step through every start of array A 4
element of the array, for instance rol — 0 0

to produce sum of elements in the
array, then we can use post-indexed addressing within a loop:
rlis address of current element (initially equal to r0).
LDR 12, [r1], #4
Use a further register to store the address of final element,
so that the loop can be correctly terminated.

M

Memory
Offset

EE382N-4 Embedded Systems Architecture

Load and Store Word or Byte: Post-indexed Addressing
Example: STR r0, [r1], #12

Memory
T
'
'
: ©__ Source
[ox5] Register

— 12 I 0x20¢ / for STR

Offset

Updated
Base
Register

> 0x200 0x5

Original '
Base
Register !

To auto-increment the base register to location 0x1f4 instead use:

STR 10, [r1], #-12
If r2 contains 3, auto-increment base register to 0x20c by multiplying this by
a:

STR 10, [r1], r2, LSL #2

e

/122010 68

EE382N-4 Embedded Systems Architecture

Offsets for Halfword and Signed Halfword / Byte Access

The Load and Store Halfword and Load Signed Byte or Halfword
instructions can make use of pre- and post-indexed addressing in
much the same way as the basic load and store instructions.
However the actual offset formats are more constrained:

The immediate value is limited to 8 bits (rather than 12 bits) giving an offset

of 0-255 bytes.
The register form cannot have a shift applied to it.

@

d

EE382N-4 Embedded Systems Architecture.

Load and Stores with User Mode Privilege

When using post-indexed addressing, there is a further form of

Load/Store Word/Byte:
<LDR|STR>{<cond>}B}T Rd, <post_indexed_address>

When used in a privileged mode, this does the load/store with
user mode privilege.
Normally used by an exception handler that is emulating a memory access
instruction that would normally execute in user mode.

M

EE382N-4 Embedded Systems Architecture.

Effect of endianess

The ARM can be set up to access its data in either little or big
endian format.
Little endian:

Least significant byte of a word is stored in bits 0-7 of an addressed word.
Big endian:

Least significant byte of a word is stored in bits 24-31 of an addressed word.
This has no real relevance unless data is stored as words and then
accessed in smaller sized quantities (halfwords or bytes).

Which byte / halfword is accessed will depend on the endianess of the

system involved.

M

EE382N-4 Embedded Systems Architecture

EE382N-4 Embedded Systems Architecture

YA Endianess Example

0 = 0x11223344

3 2 1615 87 0

4
/

a1 2423 1615 87 io 3142 1615 87

=000 | 1 "2 '3 | w Memory [w2 0] n=ouww
Little-endian ‘ LDRB r2, [r1] Big-endian
a unm s a1V o 3 owm ws a1V oo
o o0 00! a oo o u
2= 0x44 r2= 0x11

EE382N-4 Embedded Systems Architecture

Block Data Transfer (1)

The Load and Store Multiple instructions (LDM / STM) allow
betweeen 1 and 16 registers to be transferred to or from
memory.
The transferred registers can be either:
Any subset of the current bank of registers (default).
Any subset of the user mode bank of registers when in a priviledged mode
(postfix instruction with a ‘).

2
|

22 223 221 20 19 15 15 o
[P
cond |1 0 o|P|u|sjw|L| Rrn Register list

Condition field J L Base register Each bit corresponds to a particular
Uppownbit | Loadisiorebit (IS LR g
12 Uy addoffe o bse 2= Lo from memory | loact one register must be
PrefPost indexing bit —————) Write- backbit | transferred as the list cannot be empty.

0=post;add offst ate rarsfer,
before tansfer 1= wit address intobase

PSR and force user bit

PSR or force user made
orforoe ser mode

EE382N-4 Embedded Systems Architecture
Block Data Transfer (2)

Base register used to determine where memory access should
occur.
4 different addressing modes allow increment and decrement inclusive or
exclusive of the base register location.
Base register can be optionally updated following the transfer (by appending
itwithan ‘.
Lowest register number is always transferred to/from lowest memory
location accessed.

These instructions are very efficient for
Saving and restoring context
For this useful to view memory as a stack.
Moving large blocks of data around memory
For this useful to directly represent functionality of the instructions.

M

Stacks

A stack is an area of memory which grows as new data is
“pushed” onto the “top” of it, and shrinks as data is “popped” off
the top.

Two pointers define the current limits of the stack.
A base pointer
used to point to the “bottom” of the stack (the first location).
A stack pointer
used to point the current “top” of the stack.

PUSH
{1,2,3} POP
sP— |8 Result of
2 sp—[_2 pop = 3
sp = =
BASE —— BASE—> BASE—>

EE382N-4 Embedded Systems Architecture

Stack Operation

Traditionally, a stack grows down in memory, with the last “pushed” value at
the lowest address. The ARM also supports ascending stacks, where the stack
structure grows up through memory.

The value of the stack pointer can either:
Point to the last occupied address (Full stack)
and so needs pre-decrementing (ie before the push)
Point to the next occupied address (Empty stack)
and so needs post-decrementing (ie after the push)
The stack type to be used is given by the postfix to the instruction:
STMFD / LDMFD : Full Descending stack
STMFA / LDMFA : Full Ascending stack.
STMED / LDMED : Empty Descending stack
STMEA / LDMEA : Empty Ascending stack

Note: ARM Compiler will always use a Full descending stack.

M

EE382N-4 Embedded Systems Architecture.

Stack Examples

STMFD sp!, STWED sp!, STMFA sp!, STMEA sp!,
{r0,r1,r3-r5} {r0,r1,r3-r5) {r0,r1,r3-r5} {r0,r1,r3-r5}

0x418

Old SP—| Old SP —>| 0x400

0x3e8

EE382N-4 Embedded Systems Architecture

EE382N-4 Embedded Systems Architecture

EE382N-4 Embedded Systems Architecture.

Stacks and Subroutines

One use of stacks is to create temporary register workspace for subroutines.
Any registers that are needed can be pushed onto the stack at the start of the
subroutine and popped off again at the end so as to restore them before
return to the caller :

STMFD sp!,{r0-r12, Ir} : stack all registers
: and the return address

LDVFD sp!,{r0-r12, pc} : load all the registers

; and return automatically
See the chapter on the ARM Procedure Call Standard in the SDT Reference
Manual for further details of register usage within subroutines.
If the pop instruction also had the ‘S’ bit set (using ‘V’) then the transfer of the
PC when in a privileged mode would also cause the SPSR to be copied into the
CPSR (see exception handling module).

Mﬁ

Direct functionality of Block Data Transfer

When LDM / STM are not being used to implement stacks, it is
clearer to specify exactly what functionality of the instruction is:
i.e. specify whether to increment / decrement the base pointer, before or

after the memory access.
In order to do this, LDM / STM support a further syntax in
addition to the stack one:

STMIA / LDMIA : Increment After

STMIB / LDMIB : Increment Before

STMDA / LDMDA : Decrement After

STMDB / LDMDB : Decrement Before

M

EE382N-4 Embedded Systems Architecture

Swap and Swap Byte Instructions
Atomic operation of a memory read followed by a memory write
which moves byte or word quantities between registers and
memory.

Syntax:
SWP{<cond>}{B} Rd, Rm, [Rn]

/ I j ®
Memory Rd\lzl

To implement an actual swap of contents make Rd = Rm.

The compiler cannot produce this instruction.

010

EE382N-4 Embedded Systems Architecture

Software Interrupt (SWI)

EEEEEEEEEHEHHHHHE!EEHH!!!!!I!!I! (i
BEE SwWiNUMBER

Condition 1 Software Interrupt

In effect, a SWI is a user-defined instruction.

It causes an exception trap to the SWI hardware vector (thus
causing a change to supervisor mode, plus the associated state
saving), thus causing the SWI exception handler to be called.
The handler can then examine the comment field of the
instruction to decide what operation has been requested.

By making use of the SWI mechanism, an operating system can
implement a set of privileged operations which applications
running in user mode can request.

See Exception Handling Module for further details.

M

Example: Block Copy

Copy a block of memory, which is an exact multiple of 12 words long from the
location pointed to by r12 to the location pointed to by r13. r14 points to the
end of block to be copied.

; ri12 points to the start of the source data

; rl4 points to the end of the source data

; rl3 points to the start of the destination data
loop LOMIA ri12!, {rO-r11} ; load 48 bytes

STMIA r13!, {rO-r11} ; and store them 3 —
CMP riz, ri4 ; check for the end

R e — Increasing
BNE Toop ; and loop until done

This loop transfers 48 bytes in 31 cycles
Over 50 Mbytes/sec at 33 MHz

M

