
Embedded Systems: Real-Time Operating Systems Lecture 2.1

by Jonathan W. Valvano

Debugging Tools
I just proved
this algorithm
is correct!

Good Ben, but
shouldn't you
actually run it?

Software verification is a difficult but important phase.

Objectives
• Debugging hardware
• Stabilization
• Minimally intrusive debugging instruments
• Profiling
• White box versus black box testing

Control and observability

A logic analyzer is a multiple channel digital storage scope
 • numerous digital signals at various points in time
 • attached to strategic I/O signals, real-time measurement
 • attached to heart beats, profile execution
 • massive amount of information
 • triggering to capture data at appropriate times
 • must interpret the data
 • nonintrusive
 • good for real time observation of I/O signals

Embedded Systems: Real-Time Operating Systems Lecture 2.2

by Jonathan W. Valvano

Arm
Digital
Interface

Digital
Interface

PF0
PF1

Logic Analyzer

A logic analyzer and example output.
Show the digilentinc analog discovery
www.digilentinc.com/Products/Detail.cfm?Prod=ANALOG-DISCOVERY

Events that are observable in real time
 The input and output signals of the system
 Dumps (record in real time, observe later off line)
 Extra output pins

Software-based debuggers
 breakpoint by replacing the instruction with a trap
 can not be performed when the software is in ROM
 Single step with periodic interrupts

Write debugging information into flash so you can analyze
systems even if power is lost.

Hardware based debuggers (JTag).
 exists on the microcomputer chip itself
 communicates with the debugging computer
 ability to observe software execution in real time,
 hardware support to set breakpoints,
 the ability to stop the computer and
 supports hardware breakpoints.
 memory and I/O ports are accessible while running

Embedded Systems: Real-Time Operating Systems Lecture 2.3

by Jonathan W. Valvano

Debugging Theory

“rough and ready” manual methods
 desk-checking,
 dumps, and
 print statements

Debugging instrument
software code that is added for the purpose of debugging.

stabilize the system
 creating a test routine that fixes (or stabilizes) all inputs.
 can reproduce the exact inputs over and over again.
 modify the program,
 change in our outputs is a function of modification
 and not due to a change in the input parameters.

non-intrusive/intrusive Intrusiveness is used as a measure of

the degree of perturbation caused in program performance
by an instrument.

Develop your own unique debugging style.

• place all print statements in a unique column
• specific pattern in their names.
• test a run time global flag
 leaves a copy of the code in the final system
 simplifies “on-site” customer support.
• Use conditional compilation
 performance and effectiveness.

Embedded Systems: Real-Time Operating Systems Lecture 2.4

by Jonathan W. Valvano

Black box
Just inputs/outputs
Know what it does but not how it works
Have pin numbers/signal names on the connector

White box testing
Can probe inside
Know both what it does and how it works
Have internal schematics

Functional debugging
 verification of input/output parameters
 a static process where
 inputs are supplied,
 the system is run, and
 the outputs are compared against expected results.

Single Stepping or Trace

Breakpoints without filtering

Instrumentation: print statements
difficulty with print statements in embedded systems
 a standard "printer" may not be available.
 print statement itself may so slow, intrusive.
 print hardware used for normal operation
If you wish to use printf, you need to create a fputc function like this
int fputc(int ch, FILE *f){
 Serial_OutChar(ch);
 return (1);
}

Embedded Systems: Real-Time Operating Systems Lecture 2.5

by Jonathan W. Valvano

int fgetc (FILE *f){
 return (Serial_InChar());
}
int ferror(FILE *f){
 /* Your implementation of ferror */
 return EOF;
}

Appropriate debugging methods

Instrumentation: dump into array without filtering

a debugger instrument
 dumps strategic information into an array at run time.
 observe the contents of the array at a later time.
 use debugger to visualize when running.
long DebugList[100];
unsigned int DebugCnt=0;
void RecordIt(long data){
 if(DebugCnt==100){
 return;
 }
 DebugList[DebugCnt]=data;
 DebugCnt++;
}

Instrumentation: dump into array with filtering.
 A filter is a software/hardware condition that must be true
in order to place data into the array.
 if(condition){
 RecordIt(MyData);
 }

Monitor using the LED display

Embedded Systems: Real-Time Operating Systems Lecture 2.6

by Jonathan W. Valvano

A monitor is an independent output process
 executes very fast, so is minimally intrusive
 small amounts of strategic information

Examples
 LCD display
 LED's on individual otherwise unused output bits, PF0
#define PF0 (*((volatile unsigned long *)0x40025004))
#define GPIO_PORTF_DATA_R (*((volatile unsigned long *)0x400253FC))

PF0 = 0x01;
GPIO_PORTF_DATA_R |= 0x01;
PF0 = 0x00;
GPIO_PORTF_DATA_R &= ~0x01;

Performance Debugging
 • verification of timing behavior of our system
 • a dynamic process
 system is run, and
 dynamic behavior compared to expected results

Instrumentation with independent counter
unsigned long Tbuf[100];
unsigned int Tcnt=0;
void RecordTime(void){
 if(Tcnt==100)
 return;
 Tbuf[Tcnt] = NVIC_ST_CURRENT_R;
 // 24-bit SysTick counter, 20ns
 Tcnt++;
}

Instrumentation Output Port.

Embedded Systems: Real-Time Operating Systems Lecture 2.7

by Jonathan W. Valvano

4804 LDR r0,[pc,#16] ;r0= 0x400063FC
6800 LDR r0,[r0,#0x00] ;r0=PORTC
F0400020 ORR r0,r0,#0x20 ;set bit 5
4903 LDR r1,[pc,#12] ;r1= 0x40006000
F8C103FC STR r0,[r1,#0x3FC];write PORTC

GPIO_PORTC_DATA_R |= 0x20;

This subroutine is nonreentrant because of the read-modify-write access to a global.
Show an example of how this assembly listing is found
 Run on board or on simulator
 Discuss compiler optimization

#define GPIO_PORTC_DATA_R (*((volatile unsigned long *)0x400063FC))
#define GPIO_PORTC0 (*((volatile unsigned long *)0x40006004))
#define GPIO_PORTC1 (*((volatile unsigned long *)0x40006008))
#define GPIO_PORTC2 (*((volatile unsigned long *)0x40006010))
#define GPIO_PORTC3 (*((volatile unsigned long *)0x40006020))
#define GPIO_PORTC4 (*((volatile unsigned long *)0x40006040))
#define GPIO_PORTC5 (*((volatile unsigned long *)0x40006080))
#define GPIO_PORTC6 (*((volatile unsigned long *)0x40006100))
#define GPIO_PORTC7 (*((volatile unsigned long *)0x40006200))
#define GPIO_PORTC12 (*((volatile unsigned long *)0x40006018))
Bit specific addressing
2020 MOVS r0,#0x20
4902 LDR r1,[pc,#8] ;r1=0x40006080
6008 STR r0,[r1,#0x00];set bit 5

GPIO_PORTC5 = 0x20;

This subroutine is reentrant because of the read-modify-write access is atomic.

#define GPIO_PORTF_DATA_BITS_R ((volatile unsigned long *)0x40025000)
#define GPIO_PORTF_DATA_R (*((volatile unsigned long *)0x400253FC))

Create a MACRO for the pin PF1, LED
Show data sheet for TM4F123

Measurement of Dynamic Efficiency
measure dynamic efficiency of our software.
1) count bus cycles using the assembly listing
 too hard
 Show where to find bus cycle times
http://users.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/CortexM4_TRM_r0p1.pdf

2) uses an internal timer called SysTick.
unsigned long before,elasped;
// ranges from 0 to NVIC_ST_RELOAD_R
unsigned long OS_Time(void){
 return NVIC_ST_CURRENT_R; // 20ns
}
void main(void){

Embedded Systems: Real-Time Operating Systems Lecture 2.8

by Jonathan W. Valvano

 initialize stuff
 before = OS_Time();
 software to test, assuming no interrupts
 elapsed = OS_TimeDiff(OS_Time(),before);
}
Empirical measurement of dynamic efficiency.

3) use an oscilloscope or a logic analyzer.
#define GPIO_PORTD_DIR_R (*((volatile unsigned long *)0x40007400))
#define GPIO_PORTD_DEN_R (*((volatile unsigned long *)0x4000751C))
#define SYSCTL_RCGC2_R (*((volatile unsigned long *)0x400FE108))

void main(void){
volatile unsigned long delay;
SYSCTL_RCGC2_R |= 0x08; // activate D
delay = SYSCTL_RCGC2_R; // allow time to finish
GPIO_PORTD_DIR_R |= 0x20; // PD5 debugging output
GPIO_PORTD_DEN_R |= 0x20; // digital enable
 ss = 100;
 while(1){
 GPIO_PORTD_DATA_R |= 0x20;
 tt = sqrt(ss);
 GPIO_PORTD_DATA_R &= ~0x20;
 }
}
Empirical measurement of dynamic efficiency.
Can you do the above with less overhead?

Profiling

Collects the time history of strategic variables
Where executing, and when it is executing
What is the data, and when is the data these values
Where executing, when it is executing, and what is the data

Embedded Systems: Real-Time Operating Systems Lecture 2.9

by Jonathan W. Valvano

unsigned long time[100]; // when
unsigned short place[100]; // where
unsigned short data[100]; // what
unsigned short n;
void profile(unsigned short thePlace,
 unsigned short theData){
 if(n==100) return;
 time[n] = OS_Time(); // current time
 place[n]= thePlace;
 data[n] = theData;
 n++;
}
unsigned short sqrt(unsigned short s){
unsigned short t,oldt;
 t=0; // secant method
profile(0,t);
 if(s>0) {
profile(1,t);
 t=32; // initial guess 2.0
 do{
profile(2,t);
 oldt=t; // from the last
 t=((t*t+16*s)/t)/2;}
 while(t!=oldt);}
profile(3,t);
 return t;
}
A profile dumping into array.

Profiling using an Output Port

One way to profile is to make output 0,1,2,3,…etc

Embedded Systems: Real-Time Operating Systems Lecture 2.10

by Jonathan W. Valvano

Another way to profile is to make output 1,2,4,8,…etc
unsigned int sqrt(unsigned int s){
unsigned int t,oldt;
 GPIO_PORTC4 = 0x10;
 t=0; // secant method
 if(s>0) {
 GPIO_PORTC5 = 0x20;
 t=32; // initial guess 2.0
 do{
 GPIO_PORTC6 = 0x40;
 oldt=t; // from the last
 t=((t*t+16*s)/t)/2;
 GPIO_PORTC6 = 0;
 }
 while(t!=oldt);
 GPIO_PORTC5 = 0;
 }
 GPIO_PORTC4 = 0;
 return t;
}

Thread Profile
One way to profile is to set bit on enter, clear bit on exit

 GPIO_PORTC4 = 0x10;
 RxFifo_Put(data); // clears RDRF
 GPIO_PORTC4 = 0;

 GPIO_PORTC5 = 0x20;
 TxFifo_Get(&data)){
 GPIO_PORTC5 = 0;

Embedded Systems: Real-Time Operating Systems Lecture 2.11

by Jonathan W. Valvano

I/O bound or CPU bound??
unsigned short TxFifo_Size(void){
 if(TxPutPt<TxGetPt){
 return(TxPutPt+TXFIFOSIZE-TxGetPt);
 }
 else{
 return(TxPutPt-TxGetPt);
 }
}
A) Measure fifo size versus time
 When is it I/O bound?
 When is it CPU bound?

B) Measure a histogram of Fifo sizes
unsigned long histogram[TXFIFOSIZE];
void Collect(void){
 histogram[TxFifo_Size()]++;
}

