EE345M/EE380L.6 Lecture 10.1

Lecture 10 objectives are to:
* Introduce basic principles involved in digital filtering,
* Define the Z Transform and use it to analyze filters,
* Develop digital filter implementations

"hello", before filtering "hello", after filtering

Basic Principles

X¢(t) is a continuous analog signal. fy is the sample rate
x(n) = x.(nT) with -c0 <n < +oo,

There are two types of approximations associated with the sampling process.
finite precision of the ADC
finite sampling frequency.
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To prevent aliasing there should be no measurable signal above 0.5fs.

A causal digital filter calculates
y(n) from y(n-1), y(n-2),... and x(n), x(n-1), x(n-2),...
not future data (e.g., y(n+1), x(n+1) etc.)
A linear filter is constructed from a linear equation.
A nonlinear filter is constructed from a nonlinear equation.
One nonlinear filter is the median.
A finite impulse response filter (FIR) relates y(n) only in terms of x(n), x(n-1), x(n-2),...

x(n) + x(n-3)
y(n) = )

An infinite impulse response filter (IIR) relates y(n) in terms of both x(n), x(n-1),..., and y(n—1), y(n-2),...
y(m) = (113x(n) + 113°x(n-2) - 98y(n-2))/128

The definition of the Z-Transform:

o]

X@ = Zx) = D, x@z"
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EE345M/EE380L.6 Lecture 10.2

Consider the Laplace Transform

continuous discrete
time domz:n/ \ time domz:n/ \
Laplace Inverse 7 Inverse
Transform Laplace Transform
Transform Transform
frequency\‘ / frequency \ /
domain”  X(8) domain

Fig 5.1 A transform is used to study a signal in the frequency domain.

Analog t Digital
X(t)—> System | 2 yT( ) Xin) 3 System | > y(n)
Laplace Laplace Inverse 7 7 Inverse
Transform| |Transform|| Laplace Transform| [Transform z
Transform Transform|
X(s) H(s) Y(s)=H(s)*X(s) X(2) H(z) Y(2)=H(z)*X(z)

Figure 5.2. A transform can also be used to study a system in the frequency domain.

The gain = |H(s)| at s = j 2=f, for all frequencies, .
The phase = angle(H(s)) at s = j 2xf.

The gain and phase of a digital system is specified in its transform, H(z) = Y (z)/X(z).
1
fromDCto 2 fg
One can use the definition of the Z-Transform to prove that:

Zix(m-m)] =z " Z[x(m)] =z ™ X(2)

For example if X(z) is the Z-Transform of x(n),
then Z-Z'X(Z) is the Z-Transform of x(n-2).
Y(z)

X(2)
To find the response of the filter, let z be a complex number on the unit circle

H(z) =

: 1
e J2nf/fs forO0<f< o fg

or
z = cos(2rf/fg) + j sin(2nf/f)

Let
H(f) = a + bj where a and b are real numbers

1
The gain of the filter is the complex magnitude of H(z) as f varies from 0 to 2 fg.

Gain = [H(f)| = \/a2 + b2
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EE345M/EE380L.6 Lecture 10.3

The phase response of the filter is the angle of H(z) as f varies from 0 to % fs.

Phase = angle[H()] = tan"1 g (13)

5.3 MACQ
New data ~

MACQ before 4\ MACQ after
x[] [ xm)  F~, x(n)

x[11 [ x@-1) -\2\> x(n-1)
x[2] x(n-2) ~— ~— x(n-2)

1

x[31 | x@3) ~— | @3

Figure 5.8. When data is put into a multiple access circular queue, the oldest data is lost

) =230 ) S D) x (o)

short x[4]; // MACQ (mV)
short d; // derivative(V/s)
void ADC3_Handler(void){
ADC_ISC_R = ADC_ISC_IN3; // acknowledge ADC sequence 3 completion

x[3] = x[2]; // shift data

x[2] = x[1]; /7 units of mV

x[1] = x[0];

x[0] = (375*(ADC_SSFIF03_R&ADC_SSFIF03_DATA M))>>7; // in mV

d = x[0]+3*x[1]-3*x[2]-x[3]; /7 in V/s
Fifo Put(d); // pass to foreground
}

Program 5.3. Software implementation of first derivative using a multiple access circular quene.

MACQbefore ¥[1 [ x0-8) MACQafier XIO1 [ X9
X[ x(9) x[11 [ x@10)
x[2] [ x(n-10) x[2] [ x(n-11)
X[ST| x(w1h) x[3] [ x@-12)
x[4] [ x(n-12) x[4] [ x@13)
x[5] [ x(n-13) x(n-14)
x[6] [ x(n-14) x(n-15)

Pt x[7] X(n-15) S<m

\X[Sj\" x() (T
x[81| x(o-n Xn2)
x[10]] x(n-2) X(n3)
x[11]]  x(n-3) X(n-4)
x[12][  x(n-4) Xo5)
X[13)  x(0-5) X(0-6)
x[14]  x(n-6) X(n-7)
x[15]] x(n-7) X8)
x[16]| x(n-8) X9
X[17]] " x(n-9) X(n-10)
x[18] x(n-10) x(n-11)
x[19] x(n-11) x(n-12)
x[20]]  x(n-12) x(n-13)
x[21]  x(n-13) X(n-14)
x[22] x(n-14) x(n-15)
x[23] x(n-15) )
x[24]] x(n) FE))
x[25] x(n-1) X(02)
x[26][  x(n-2) )
x[27]  x(n-3) o)
x[28][ x(n-4) X3
x[29]  x(n-5) X06)
x[30]  x(n-6) X(0-7)
x[31]f  x(n-7) X(n-8)

Figure 5.9. When data is put into a multiple access circular quene, the oldest data is lost.
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unsigned short x[32]; // two copies
unsigned short *Pt; // pointer to current
unsigned short Sum; // sum of the last 16 samples

void LPF_Init(void){
Pt = &x[0]; Sum = O;

// calculate one filter output

// called at sampling rate

// Input: new ADC data

// Output: filter output, DAC data

unsigned short LPF_Calc(unsigned short newdata){

Lecture 10.4

Sum = Sum - *(Pt+16); // subtract the one 16 samples ago
if(Pt == &x[0{
Pt = &x[16]; // wrap
} else{
Pt--; // make room for data
}

*Pt = *(Pt+16) = newdata; // two copies of the new data
return Sum/16;

}

Program 5.4. Digital low pass filter implemented by averaging the previous 16 samples (cutoff = £/32).

5.4. Using the Z-Transform to Derive Filter Response

Although this filter appears to be simple, we can use it to implement a low-Q 60 Hz notch.
y(n) = (x(n)+x(n-3))/2

Again we take the Z-Transform of both:
Y(z) = (X(z) + 2°X(2))/2

Next we rewrite the equation in the form of H(z)=Y(z)/X(z).
Hz)=YE)/X(z) =% +27)

We can to determine the gain and phase response of this filter.
H() =" (1 +¥Fy = 14 (1 + cos(6nf)f;) - j sin(6nff;) )
Gain = |H(f)| = Y sqrt((I + cos(6nf/f,))* + sin(6nf/£,)* ))
Phase = angle(H()) = tan™ (-sin(6n//,)/(I + cos(6nf/f;))

short x[4]; // MACQ

void ADC3_Handler(void){ short y;

ADC_ISC_R = ADC_ISC_IN3; // acknowledge ADC sequence 3 completion
x[3] = x[2]; // shift data

x[2] = x[1]; // units, ADC sample 0 to 1023

x[1] = x[0];

X[0] = ADC_SSFIFO3_R&ADC_SSFIFO3_DATA M; // O to 1024

y = (X[0]+x[3]1)72; // filter output
Fifo_Put(y); // pass to foreground
3

Program 5.5. If the sampling rate is 360 Hz, this filter rejects 60 Hz.

y(n) =(y(n-1)+x(n))/2

¥ =xayx-1)2

y(n) =(x(n)+x(n-1)+x(n-2)+
x(n-3)+x(n-4)+x(n-5))/6

y(n) =(x(n)+x(n-3))/2

'

0.0 T T T T ¥
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frequency f/fs
Figure 5.10. Gain versus frequency response for four simple digital filters.
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5.5. IIR Filter design

There are two objectives for this example

show an example of a digital notch filter,
demonstrate the use of fixed-point math.

60 Hz noise is a significant problem in most data acquisition systems. The 60 Hz noise reduction can be

accomplished:

1) Reducing the noise source, e.g., shut off large motors;
2) Shielding the transducer, cables, and instrument;

3) Implement a 60 Hz analog notch filter;

4) Implement a 60 Hz digital notch filter.

Lecture 10.5

analog condition digital condition consequence
zero near s=j2xf line zero near z=e"™" low gain near the zero
pole near s=j2xf line pole near z=¢*"'® high gain near the pole

zeros in conjugate pairs
poles in conjugate pairs
poles in left half plane
poles in right half plane
pole near a zero

Zeros in conjugate pairs
poles in conjugate pairs
poles inside unit circle
poles outside unit circle
pole near a zero

the output y(t) is real
the output y(t) is real
stable system
unstable system
high Q response

Table Analogies between the analog and digital filters.

It is the 60 Hz digital notch filter that will be implemented in this example. The signal is sampled at f&=480
Hz. We wish to place the zeros (gain=0) at 60 Hz, thus

9=i2n°% =+ 7/4
S

1
215 0=n/2 io
z=

1 —
-1 o=mn

Figure 5.13. Pole-gero plot of a 60 Hz, digital notch filter.

The zeros are located on the unit circle at 60 Hz

z, = cos(0) + j sin(0) z, = cos(0) - j sin(0)

To implement a flat pass band away from 60 Hz the poles are placed next to the zeros, just inside the unit circle. Let
a. define the closeness of the poles where 0 < a <1.

p,=az] p,=az,
fora=0.75

The transfer function is
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k (z-
e ] B0 _ (==

S @=p)  (z-p)Ez-p)

which can be put in standard form (i.e., with terms 1, z'l, 72 )

1—2cos(6)z_1+z_2

1—20ccos(9)z_1+otzz"2

H(z) =

y(n) =x(n) +xm-2) -(49*y(n-2))/64

-2
1+z
H(iz)= 1 +£ >
64~
At z=1 this reduces to
.2 128 128
DCGain =75 = G129 ~ 113
1 +a

y(n) = (113ex(n) + 113+x(n-2) - 98+y(n-2))/128

long x[3]; // MACQ for the ADC input data
long y[3]; 7/ MACQ for the digital Ffilter output
void ADC3_Handler(void){
ADC_ISC_R = ADC_ISC_IN3; // acknowledge ADC sequence 3 completion

x[2] = x[1]; x[1] = x[0]; // shift data

y[2] = y[11: y[1]1 = y[O];

x[0] = ADC_SSFIF03_R&ADC_SSFIFO3 DATA M; // 0 to 1024
v[0] = (A13*(xX[0]1+x[2])-98*y[2])/128; // filter output
Fifo_ Put((short)y[0]); // pass to foreground

}
Program 5.7. If the sampling rate is 240 Hz, this filter rejects 60 Hz.

The “Q” of a digital notch filter is defined to be

fe
Q=7%¢

where f; is the center or notch frequency, and Af frequency range where is gain is below 0.707 of the DC gain.
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Figure 5.14. Gain versus frequency response of two 60 Hz digital notch filters.

Show the two spreadsheets DigitalNotchFilter.xls (DigitalFilterDesign.xls)
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