11. Use FFT to Design DF

Lab 4 Application of RTOS

- Input sound, analog filter
- Digital filter, FFT
- Display amplitude versus freq on the oLED

Reference EE345M book, chapter 5

Design a linear FIR digital filter

- Specify gain versus frequency
- Specify phase versus frequency

Fast Fourier Transform (FFT)

- FFT is a faster version of the Discrete Fourier Transform (DFT)
- FFT spectrum of a cosine, which has a frequency of 0.1 Fs
 - Fs = 10000 Hz
 - Cosine freq = 1000 Hz
- Region interested in from 0 to Fs/2 (symmetric about Fs/2)
FIR digital filter

- $Y(z) = H(z) \times X(z)$
- $h(n) = \text{IFFT} \{H(z)\}$
- Convolution
 - $y(n) = h(n) \ast x(n)$
- Constants $h_0, h_1, \ldots, h_{N-1}$
- $y(n) = h_0 \cdot x(n) + h_1 \cdot x(n-1) + \ldots + h_{N-1} \cdot x(n-(N-1))$
- N multiplies, $N-1$ additions per sample

How to choose sampling rate

- Nyquist Rate
- Limitation of display
- Limitation of processor
- Limitation of RAM
- Limitation of human eyes and ears
- Limitation of communication channel

How to choose number of samples

- Frequency resolution = f_s/N
- Increase in N results in better frequency resolution
- However, increase in N leads to a bigger MACQ buffer and more multiplies and additions
- Does not need to be a power of 2
 - DFT calculated once, off line

Design process (1)

- Specify desired gain and phase, 0 to $\frac{1}{2} f_s$
 - k goes from 0 to $N/2$ ($f = k f_s/N$)
 - $H(k)$ is complex
 - $|H(k)|$ is gain
 - $\angle(H(k))$ is phase
- For $\frac{1}{2} f_s$ to f_s
 - $H(N-k)$ is complex conjugate of $H(k)$
 - Poles and zeros are in complex conjugate pairs
Design process (2)

- Take IDFT of $H(k)$ to yield $h(n)$
 - n goes from 0 to $N-1$
 - $h(n)$ will be real, because $H(k)$ symmetric
- The digital filter is
 $$y(n) = h_0 \cdot x(n) + h_1 \cdot x(n-1) + \ldots + h_{N-1} \cdot x(n-(N-1))$$

Binary Fixed point notation

- Binary fixed-point is faster than decimal fixed-point
- Q_n number (16 bit)
 - n: specifies the resolution $= 2^{-n}$
 - $16-n$: specifies Range
- Eg: 10.450 (unsigned number) with $n=11$?
- How is this number stored as an integer?

Example

- Open FIRdesign51.xls
- Change sampling rate to 10,000 Hz
- Adjust red desired gain to make BPF
 - Pass 2 to 4 kHz
 - Look at sharp corner versus round corner
- Notice linear phase
- Copy 51 coefficients into software

2k to 4k BPF
FIR Filter SW design

```c
const long h[51] ={-3,-9,4,5,0,17,5,-20,-5,-7,-22,
24,41,-8,2,1,-74,-31,71,20,33,125,-119,-350,67,
462,67,-350,-119,125,33,20,71,-31,-74,1,2,-8,41,
24,-22,-7,-5,-20,5,17,0,5,4,-9,-3};
static unsigned int n=50;   // 51,52,… 101
short Filter(short data){
    unsigned int k;
    static long x[102]; // this MACQ needs twice
    long y;
    n++;if(n==102) n=51;
    x[n] = x[n-51] = data;  // two copies of new data
    y = 0;
    for(k=0;k<51;k++){
        y = y + h[k]*x[n-k];  // convolution
    }
    y = y/256;  // fixed point
    return y;
}
```

Circular Buffering

Source: "Communication system design using DSP algorithms" by Steven A. Tretter (chapter 3, page 73)

Optimization

- Pointer implementations of MACQ faster
- Do not try and shift the data
- Convolution x[n]*h[n] takes N multiplies, N-1 additions per sample
 - Can be optimized to N/2 multiplies
 - Coefficients are symmetric
- Assembly optimization with MLA
 - Multiply with accumulate