
EE445M/EE380L.6 Lecture 11.1

by Jonathan W. Valvano

Lecture 11 objectives are to:
 • The Discrete Fourier Transform
 • Windowing
 • Use DFT to design a FIR digital filter

Discrete Fourier Transform, DFT
Input: N time samples

{an} = {a0,a1,a2,…,aN-1}
Output: a set of N frequency bins

{Ak} = {A0,A1,A2,…,AN-1}

1N

0n
N

kn
nk WaA where eW /Nj2

N

 k=0,1,2,…,N-1

Inverse DFT
Input N frequency bins

{Ak}={A0,A1,A2,…,AN-1}
Output time domain samples

{an}={a0,a1,a2,…,aN-1}

1N

0k
N

kn-
kn WA

N

1
a where eW /Nj2

N

 n=0,1,2,…,N-1

EE445M/EE380L.6 Lecture 11.2

by Jonathan W. Valvano

• While the DFT deals only with samples and
bins, with no concept of seconds and Hz,
when looking at ADC samples spaced at
intervals T (in sec)

• Frequency bin m represents components at
k*fS/N (in Hz)

• The DFT resolution in Hz/bin is the
reciprocal of the total time spent gathering
time samples; i.e., 1/(NT)

 for(n = 0; n < 64; n++){
 data = OS_Fifo_Get();
 if(filterFlag) data = FIR(data);
 if(voltFlag) PlotData(data);
 x[n] = data&0xFFFF;
// real is 0 to 1023, imaginary part is 0
 }
 cr4_fft_64_stm32(y,x,64);
// y(k) has same units as x(n)

 for(k = 0; k < 32; k++){
 real = y[k]&0xFFFF; // bottom 16 bits
 imag = y[k]>>16; // top 16 bits
 mag = sqrt(real*real+imag*imag);
 if(FFTflag) LCD_Plot(mag);
 if V is the DFT output magnitude in volts
 dBFS = 20 log10(V/3); // full scale is 3.0 volts

EE445M/EE380L.6 Lecture 11.3

by Jonathan W. Valvano

This is code from Lab2 consumer showing how to run the FFT
 for(t = 0; t < 64; t++){ // collect 64 ADC samples
 data = OS_Fifo_Get(); // get from producer
 x[t] = data; // real 0 to 1023, imaginary 0
 }
 cr4_fft_64_stm32(y,x,64);// complex FFT of ADC values
If you want to calculate the magnitude from this FFT, the top 16 bits of y has the imaginary part
and the bottom half is real.
 for(t = 0; t < 32; t++){ // first half
 real = y[t]&0xFFFF; // bottom 16 bits
 imag = y[t]>>16; // top 16 bits
 mag[t] = sqrt(real*real+imag*imag);
 }
 http://users.ece.utexas.edu/~valvano/EE345M/sqrt.c
This code takes 1024 points, and plots 4 pixels per tick. This means there are 512/4=128 lines
across the screen (like the cover of the book). It also uses the db full scale feature of the plotter
 for(t = 0; t < 1024; t++){ // collect 1024 ADC samples
 data = OS_Fifo_Get(); // get from producer
 x[t] = data; // real 0 to 1023, imaginary 0
 }
 cr4_fft_1024_stm32(y,x,1024); // complex FFT
 for(t = 0; t < 512; t++){ // first half
 real = y[t]&0xFFFF; // bottom 16 bits
 imag = y[t]>>16; // top 16 bits
 data = sqrt(real*real+imag*imag);
 ST7735_PlotdBfs(data);
 if((t%4)==3){
 RIT128x96x4PlotNext(); // 4 pixel per tick
 }
 }
 ST7735_PlotNext(); //128 ticks across screen

Applications
Measure S/N ratio

 Identify noise
DF design

Four or Five approximations
 Finite min
 Finite max (range = max-min)
 Precision (resolution is range/precision)
 Sampling rate
 Finite number of samples -> Spectral leakage

EE445M/EE380L.6 Lecture 11.4

by Jonathan W. Valvano

Inherent in the application of FFT or cross correlation in computer based systems is the need
to operate on finite sequences. Even virtual memory has finite size, and most customers are
not willing to wait for infinite time to get the results. The process of choosing a finite
subsequence on which to operate is called windowing. It is critical to capture a reasonable
window, because the data is actually considered as an infinite periodic signal. In other words,
if we process the finite sequence

 x(0), x(1), x(2), … x(N-1)

then the FFT or cross correlation will effectively be determined for the infinite sequence

 …, x(0), x(1), x(2), … x(N-1), x(0), x(1), x(2), … x(N-1), x(0), x(1), x(2), … x(N-1),…

Figures 8.4a and 8.4b show an improperly chosen window. Notice that the infinite periodic
signal does not accurately represent the original data.

-1

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5

Time (seconds)

E
K

G
 (

m
V

)

window

Figure 8.4a. Original data with window from 2 to 3 seconds

-1

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5

Time (seconds)

E
K

G
 (

m
V

)

windowwindowwindow

Figure 8.4b. Equivalent infinite periodic signal resulting from the window shown in Figure 2a.

EE445M/EE380L.6 Lecture 11.5

by Jonathan W. Valvano

Figures 8.5a and 8.5b show a properly chosen window. Notice that the infinite periodic
signal accurately represents the shape of the original data, but the information about heart
rate is lost.

-1

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5

Time (seconds)

E
K

G
 (

m
V

)

window

Figure 8.5a. Original data with window from 1.7 to 2.5 seconds

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5

Time (seconds)

E
K

G
 (

m
V

)

windowwindowwindow window

Figure 8.5b. Equivalent infinite periodic signal resulting from the window shown in Figure 8.5a.

If the window has multiple cycles, then there will be multiple correlations. To prevent
multiple matches, we can choose a window with one cycle (like Figure 8.5), or we can a
mask to the data, as shown in Figure 8.6. This is a trapezoidal mask, but other mask shapes
can be used (rectangle, sine-wave, exponential). This method allows us to select a window
without having to specify the sequence length. Notice that the window shown in Figure 8.6
could be used to study the shape of just the QRS wave, without including the P and T waves.

EE445M/EE380L.6 Lecture 11.6

by Jonathan W. Valvano

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5

Time (seconds)

E
K

G
 (

m
V

)
mask

Figure 8.6. A window is created by multiplying the original data with a mask.

EE445M/EE380L.6 Lecture 11.7

by Jonathan W. Valvano

Windowing
• Spectral leakage can be virtually eliminated by
“windowing” time samples prior to the DFT
– Windows taper smoothly down to zero at the beginning and
the end of the observation window
– Time samples are multiplied by window coefficients on a
sample-by-sample basis
• Windowing sinewaves places the window spectrum at the
sinewave frequency
– Convolution in frequency

EE445M/EE380L.6 Lecture 11.8

by Jonathan W. Valvano

Window coefficients w(k) will be normalized so
that the rms value of the time samples is the
same before and after windowing; that is,

Hamming w(k) = 0.54-0.46*cos(2k/(N-1))

Hann w(k) = (sin(k/(N-1)))2

Cosine w(k) = sin(k/(N-1))

Triangle w(k) = (2/N)(N/2 - |k – (N-1)/2|)

Reference ©2002 Eric Swanson, Mixed Signal Class

FFT Windowing

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 16 32 48 64
Sample number

W
in

do
w

Hamming

Cosine

FIR digital filter design
You will process the real-time data in the foreground by implementing a FIR digital filter. After you have

chosen the sampling rate (e.g., 44 kHz) you next will choose a FIR filter length (e.g., N=64). The ratio fs/N (e.g.,
44 kHz/64 = 687 Hz) will determine the frequency resolution of the FIR filter design. Let H(z) be the desired filter

n=0

N-1

w(k)
2

= 1
1

N

EE445M/EE380L.6 Lecture 11.9

by Jonathan W. Valvano

gain transfer function. Table 1 gives an example desired frequency response. The magnitude of H(k) is selected to
implement the desired gain versus frequency response. In order to preserve the shape of the audio signals, we will
implement linear phase. For frequencies above ½ fs, we make H(k) be the complex conjugate of the N-k term. This
will guarantee that the inverse DFT of H(z) will yield real results. The desired filter response, plotted as blue dots in
Figure 1.

FIR digital filter

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000

Frequency

G
ai

n

Figure 1. Desired filter response. This is H.

k f (Hz) Mag(H(k)) Angle(H(k)) k f (Hz) Mag(H(k)) Angle(H(k))
0 0.0 0 0.00 32 22000.0 0 -78.54
1 687.5 1 -2.45 33 -21312.5 2 76.09
2 1375.0 1 -4.91 34 -20625.0 4 73.63
3 2062.5 1 -7.36 35 -19937.5 8 71.18
4 2750.0 2 -9.82 36 -19250.0 10 68.72
5 3437.5 4 -12.27 37 -18562.5 10 66.27
6 4125.0 6 -14.73 38 -17875.0 10 63.81
7 4812.5 8 -17.18 39 -17187.5 10 61.36
8 5500.0 10 -19.63 40 -16500.0 10 58.90
9 6187.5 10 -22.09 41 -15812.5 10 56.45
10 6875.0 10 -24.54 42 -15125.0 10 54.00
11 7562.5 10 -27.00 43 -14437.5 10 51.54
12 8250.0 10 -29.45 44 -13750.0 10 49.09
13 8937.5 10 -31.91 45 -13062.5 10 46.63
14 9625.0 10 -34.36 46 -12375.0 10 44.18
15 10312.5 10 -36.82 47 -11687.5 10 41.72
16 11000.0 10 -39.27 48 -11000.0 10 39.27
17 11687.5 10 -41.72 49 -10312.5 10 36.82
18 12375.0 10 -44.18 50 -9625.0 10 34.36
19 13062.5 10 -46.63 51 -8937.5 10 31.91
20 13750.0 10 -49.09 52 -8250.0 10 29.45
21 14437.5 10 -51.54 53 -7562.5 10 27.00

EE445M/EE380L.6 Lecture 11.10

by Jonathan W. Valvano

22 15125.0 10 -54.00 54 -6875.0 10 24.54
23 15812.5 10 -56.45 55 -6187.5 10 22.09
24 16500.0 10 -58.90 56 -5500.0 10 19.63
25 17187.5 10 -61.36 57 -4812.5 8 17.18
26 17875.0 10 -63.81 58 -4125.0 6 14.73
27 18562.5 10 -66.27 59 -3437.5 4 12.27
28 19250.0 10 -68.72 60 -2750.0 2 9.82
29 19937.5 8 -71.18 61 -2062.5 1 7.36
30 20625.0 4 -73.63 62 -1375.0 1 4.91
31 21312.5 2 -76.09 63 -687.5 1 2.45
Table 1. Desired filter response for one patient that compensates for hearing loss. This is H.

Let x(n) be the input (read from the ADC) and X(z) be the input in the frequency domain. Let y(n) be the FIR filter
output, and let Y(z) be the FIR filter output in the frequency domain.
 Y(z) = H(z) X(z)
 y(n) = IFFT { H(z) FFT{x(t)} }

Take Inverse FFT of the desired gain to get N=64 FIR filter coefficients. Because the negative frequencies in
Table 1 are complex conjugates of the positive frequencies, h(n) will be real.
h(n) = IFFT{H(z)} =
1.9113, -2.7895, 0.6680, -4.0131, 0.5350, -3.0053, 1.7441, -2.0000, 1.7441, -3.0053, 0.5350, -4.0131, 0.6680,
-2.7895, 1.9113, -1.1716, 0.9273, -1.6178, -2.6059, -2.2019, -4.5219, -0.0708, -2.9944, 2.0000, -1.4968, -1.0009,
-0.8678, -6.6854, 5.8260, -7.5759, 22.0888, -6.8284, 34.2008, -22.7620, 20.6036, -67.0996, -19.6370, -121.1778,
-56.3812, 494.0000, -56.3812, -121.1778, -19.6370, -67.0996, 20.6036, -22.7620, 34.2008, -6.8284, 22.0888,
-7.5759, 5.8260, -6.6854, -0.8678, -1.0009, -1.4968, 2.0000, -2.9944, -0.0708, -4.5219, -2.2019, -2.6059, -1.6178, 0.9273, -1.1716

Scale to make fixed point coefficients h0 to h63, e.g., 1.9113 ≈ 984/489
const long h[64]={489,-714,171,-1027,137,-769,446,-512,446,-769,137,-1027,171,
 -714,489,-300,237,-414,-667,-564,-1158,-18,-767,512,-383,-256,-222,
 -1711,1491,-1939,5655,-1748,8755,-5827,5275,-17177,-5027,-31022,-14434,126464,-14434,
 -31022,-5027,-17177,5275,-5827,8755,-1748,5655,-1939,1491,-1711,-222,-256,-383,
 512,-767,-18,-1158,-564,-667,-414,237,-300};

Multiplication in the frequency domain is equivalent to convolution in the time domain. The FIR filter is the
convolution of the data with the inverse transform of the desired filter.
 y(n) = h(n) * x(n) = x(n) * h(n) (* means convolution here)

 y(n) = sum [h(i)·x(n-i)] as i goes from –∞ to +∞. (· means multiplication here)

Because there are a finite number of h(n) terms, the convolution is a finite sum

y[i]= (h[0]*x[i]+h[1]*x[i-1]+h[2]*x[i-2]+…+h[63]*x[i-63])/256; // * means multiplication here

EE445M/EE380L.6 Lecture 11.11

by Jonathan W. Valvano

What is the effect caused by sampling jitter?

