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Lecture 11 objectives are to: 
 • The Discrete Fourier Transform 
 • Windowing  
 • Use DFT to design a FIR digital filter  
 
Discrete Fourier Transform, DFT 
Input: N time samples  

{an} = {a0,a1,a2,…,aN-1}  
Output: a set of N frequency bins 

{Ak} = {A0,A1,A2,…,AN-1} 
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Inverse DFT 
Input N frequency bins  

{Ak}={A0,A1,A2,…,AN-1}  
Output time domain samples  

{an}={a0,a1,a2,…,aN-1}  
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• While the DFT deals only with samples and 
bins, with no concept of seconds and Hz, 
when looking at ADC samples spaced at 
intervals T (in sec) 

• Frequency bin m represents components at 
k*fS/N (in Hz) 

• The DFT resolution in Hz/bin is the 
reciprocal of the total time spent gathering 
time samples; i.e., 1/(NT) 

 
 

  for(n = 0; n < 64; n++){    
    data = OS_Fifo_Get();     
    if(filterFlag) data = FIR(data); 
    if(voltFlag) PlotData(data); 
    x[n] = data&0xFFFF;      
// real is 0 to 1023, imaginary part is 0 
    } 
    cr4_fft_64_stm32(y,x,64);  
// y(k) has same units as x(n)  
 
    for(k = 0; k < 32; k++){    
    real = y[k]&0xFFFF;   // bottom 16 bits 
    imag = y[k]>>16;      // top 16 bits 
    mag = sqrt(real*real+imag*imag); 
    if(FFTflag) LCD_Plot(mag); 
  if V is the DFT output magnitude in volts 
   dBFS = 20 log10(V/3);  // full scale is 3.0 volts 
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This is code from Lab2 consumer showing how to run the FFT 
    for(t = 0; t < 64; t++){ // collect 64 ADC samples 
      data = OS_Fifo_Get();  // get from producer 
      x[t] = data;           // real 0 to 1023, imaginary 0 
    } 
    cr4_fft_64_stm32(y,x,64);// complex FFT of ADC values 
If you want to calculate the magnitude from this FFT, the top 16 bits of y has the imaginary part 
and the bottom half is real. 
    for(t = 0; t < 32; t++){   // first half 
      real = y[t]&0xFFFF;       // bottom 16 bits 
      imag = y[t]>>16;          // top 16 bits 
      mag[t] = sqrt(real*real+imag*imag); 
    } 
 http://users.ece.utexas.edu/~valvano/EE345M/sqrt.c      
This code takes 1024 points, and plots 4 pixels per tick. This means there are 512/4=128 lines 
across the screen (like the cover of the book). It also uses the db full scale feature of the plotter 
    for(t = 0; t < 1024; t++){ // collect 1024 ADC samples 
      data = OS_Fifo_Get();  // get from producer 
      x[t] = data;           // real 0 to 1023, imaginary 0 
    } 
    cr4_fft_1024_stm32(y,x,1024);  // complex FFT  
    for(t = 0; t < 512; t++){   // first half 
      real = y[t]&0xFFFF;       // bottom 16 bits 
      imag = y[t]>>16;          // top 16 bits 
      data = sqrt(real*real+imag*imag); 
      ST7735_PlotdBfs(data); 
      if((t%4)==3){ 
        RIT128x96x4PlotNext(); // 4 pixel per tick 
      } 
    } 
    ST7735_PlotNext();   //128 ticks across screen 
 

Applications 
Measure S/N ratio 

 Identify noise 
DF design 

Four or Five approximations 
 Finite min  
 Finite max (range = max-min) 
 Precision (resolution is range/precision) 
 Sampling rate 
 Finite number of samples -> Spectral leakage 
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Inherent in the application of FFT or cross correlation in computer based systems is the need 
to operate on finite sequences. Even virtual memory has finite size, and most customers are 
not willing to wait for infinite time to get the results. The process of choosing a finite 
subsequence on which to operate is called windowing. It is critical to capture a reasonable 
window, because the data is actually considered as an infinite periodic signal. In other words, 
if we process the finite sequence 
 
 x(0), x(1), x(2), … x(N-1) 
 
then the FFT or cross correlation will effectively be determined for the infinite sequence 
 
 …, x(0), x(1), x(2), … x(N-1), x(0), x(1), x(2), … x(N-1), x(0), x(1), x(2), … x(N-1),… 
 
Figures 8.4a and 8.4b show an improperly chosen window.  Notice that the infinite periodic 
signal does not accurately represent the original data. 
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Figure 8.4a. Original data with window from 2 to 3 seconds 
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Figure 8.4b. Equivalent infinite periodic signal resulting from the window shown in Figure 2a. 
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Figures 8.5a and 8.5b show a properly chosen window.  Notice that the infinite periodic 
signal accurately represents the shape of the original data, but the information about heart 
rate is lost. 
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Figure 8.5a. Original data with window from 1.7 to 2.5 seconds 
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Figure 8.5b. Equivalent infinite periodic signal resulting from the window shown in Figure 8.5a. 
 
 
If the window has multiple cycles, then there will be multiple correlations. To prevent 
multiple matches, we can choose a window with one cycle (like Figure 8.5), or we can a 
mask to the data, as shown in Figure 8.6. This is a trapezoidal mask, but other mask shapes 
can be used (rectangle, sine-wave, exponential).  This method allows us to select a window 
without having to specify the sequence length.  Notice that the window shown in Figure 8.6 
could be used to study the shape of just the QRS wave, without including the P and T waves.  
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Figure 8.6. A window is created by multiplying the original data with a mask. 
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Windowing 
• Spectral leakage can be virtually eliminated by 
“windowing” time samples prior to the DFT 
– Windows taper smoothly down to zero at the beginning and 
the end of the observation window 
– Time samples are multiplied by window coefficients on a 
sample-by-sample basis 
• Windowing sinewaves places the window spectrum at the 
sinewave frequency 
– Convolution in frequency 
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Window coefficients w(k) will be normalized so 
that the rms value of the time samples is the 
same before and after windowing; that is, 

 
Hamming  w(k) = 0.54-0.46*cos(2k/(N-1)) 
 
Hann   w(k) = (sin(k/(N-1)))2 
 
Cosine   w(k) = sin(k/(N-1)) 
 
Triangle  w(k) = (2/N)(N/2 - |k – (N-1)/2|) 

Reference ©2002 Eric Swanson, Mixed Signal Class 

FFT Windowing
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FIR digital filter design 
You will process the real-time data in the foreground by implementing a FIR digital filter. After you have 

chosen the sampling rate (e.g., 44 kHz) you next will choose a FIR filter length (e.g., N=64). The ratio fs/N (e.g., 
44 kHz/64 = 687 Hz) will determine the frequency resolution of the FIR filter design. Let H(z) be the desired filter 
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gain transfer function. Table 1 gives an example desired frequency response. The magnitude of H(k) is selected to 
implement the desired gain versus frequency response. In order to preserve the shape of the audio signals, we will 
implement linear phase. For frequencies above ½ fs, we make H(k) be the complex conjugate of the N-k term. This 
will guarantee that the inverse DFT of H(z) will yield real results. The desired filter response, plotted as blue dots in 
Figure 1.  
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Figure 1. Desired filter response. This is H. 
 
 
k f (Hz) Mag(H(k)) Angle(H(k))  k f (Hz) Mag(H(k)) Angle(H(k)) 
0 0.0 0 0.00  32 22000.0 0 -78.54 
1 687.5 1 -2.45  33 -21312.5 2 76.09 
2 1375.0 1 -4.91  34 -20625.0 4 73.63 
3 2062.5 1 -7.36  35 -19937.5 8 71.18 
4 2750.0 2 -9.82  36 -19250.0 10 68.72 
5 3437.5 4 -12.27  37 -18562.5 10 66.27 
6 4125.0 6 -14.73  38 -17875.0 10 63.81 
7 4812.5 8 -17.18  39 -17187.5 10 61.36 
8 5500.0 10 -19.63  40 -16500.0 10 58.90 
9 6187.5 10 -22.09  41 -15812.5 10 56.45 
10 6875.0 10 -24.54  42 -15125.0 10 54.00 
11 7562.5 10 -27.00  43 -14437.5 10 51.54 
12 8250.0 10 -29.45  44 -13750.0 10 49.09 
13 8937.5 10 -31.91  45 -13062.5 10 46.63 
14 9625.0 10 -34.36  46 -12375.0 10 44.18 
15 10312.5 10 -36.82  47 -11687.5 10 41.72 
16 11000.0 10 -39.27  48 -11000.0 10 39.27 
17 11687.5 10 -41.72  49 -10312.5 10 36.82 
18 12375.0 10 -44.18  50 -9625.0 10 34.36 
19 13062.5 10 -46.63  51 -8937.5 10 31.91 
20 13750.0 10 -49.09  52 -8250.0 10 29.45 
21 14437.5 10 -51.54  53 -7562.5 10 27.00 
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22 15125.0 10 -54.00  54 -6875.0 10 24.54 
23 15812.5 10 -56.45  55 -6187.5 10 22.09 
24 16500.0 10 -58.90  56 -5500.0 10 19.63 
25 17187.5 10 -61.36  57 -4812.5 8 17.18 
26 17875.0 10 -63.81  58 -4125.0 6 14.73 
27 18562.5 10 -66.27  59 -3437.5 4 12.27 
28 19250.0 10 -68.72  60 -2750.0 2 9.82 
29 19937.5 8 -71.18  61 -2062.5 1 7.36 
30 20625.0 4 -73.63  62 -1375.0 1 4.91 
31 21312.5 2 -76.09  63 -687.5 1 2.45 
Table 1. Desired filter response for one patient that compensates for hearing loss. This is H.  
 
Let x(n) be the input (read from the ADC) and X(z) be the input in the frequency domain. Let y(n) be the FIR filter 
output, and let Y(z) be the FIR filter output in the frequency domain. 
   Y(z) = H(z) X(z)  
   y(n) = IFFT { H(z) FFT{x(t)} } 
 
Take Inverse FFT of the desired gain  to get N=64 FIR filter coefficients. Because the negative frequencies in 
Table 1 are complex conjugates of the positive frequencies, h(n) will be real. 
h(n) = IFFT{H(z)} = 
1.9113, -2.7895, 0.6680, -4.0131, 0.5350, -3.0053, 1.7441, -2.0000, 1.7441, -3.0053, 0.5350, -4.0131, 0.6680,  
-2.7895, 1.9113, -1.1716, 0.9273, -1.6178, -2.6059, -2.2019, -4.5219, -0.0708, -2.9944, 2.0000, -1.4968, -1.0009,  
-0.8678, -6.6854, 5.8260, -7.5759, 22.0888, -6.8284, 34.2008, -22.7620, 20.6036, -67.0996, -19.6370, -121.1778, 
-56.3812, 494.0000, -56.3812, -121.1778, -19.6370, -67.0996, 20.6036, -22.7620, 34.2008, -6.8284, 22.0888,  
-7.5759, 5.8260, -6.6854, -0.8678, -1.0009, -1.4968, 2.0000, -2.9944, -0.0708, -4.5219, -2.2019, -2.6059, -1.6178, 0.9273, -1.1716 

 
Scale to make fixed point coefficients h0 to h63, e.g., 1.9113 ≈ 984/489 
const long h[64]={489,-714,171,-1027,137,-769,446,-512,446,-769,137,-1027,171, 
     -714,489,-300,237,-414,-667,-564,-1158,-18,-767,512,-383,-256,-222, 
     -1711,1491,-1939,5655,-1748,8755,-5827,5275,-17177,-5027,-31022,-14434,126464,-14434, 
     -31022,-5027,-17177,5275,-5827,8755,-1748,5655,-1939,1491,-1711,-222,-256,-383, 
     512,-767,-18,-1158,-564,-667,-414,237,-300}; 
 
Multiplication in the frequency domain is equivalent to convolution in the time domain. The FIR filter is the 
convolution of the data with the inverse transform of the desired filter.  
   y(n) = h(n) * x(n)  = x(n) * h(n)      (   *   means convolution here) 
 
   y(n) = sum [h(i)·x(n-i)] as i goes from –∞ to +∞.  (    ·   means multiplication here) 
 
Because there are a finite number of h(n) terms, the convolution is a finite sum   

y[i]= (h[0]*x[i]+h[1]*x[i-1]+h[2]*x[i-2]+…+h[63]*x[i-63])/256;    // * means multiplication here 
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What is the effect caused by sampling jitter? 


