
EE345M/EE380L.6 Page 13.1

Lecture 13 objectives are to:
 • Define the terms bandwidth, latency, and priority;
 • Introduce the concept of DMA synchronization.

1. Introduction

As the performance requirements of our embedded system grow, there comes a point when busy-
wait and interrupt synchronization methods of I/O interfacing are not fast enough. Direct memory access
(DMA) is an interfacing technique that allows data to transfer directly from I/O device to memory, or from
memory to the I/O device without going through the processor. Embedded system designers will need to
use DMA when interfacing high speed devices.
 Bandwidth, latency, and priority are quantitative parameters we use to evaluate the performance of
an I/O interface. The basic function of an input interface is to transfer information about the external
environment into the computer. In a similar way, the basic function of an output interface is to transfer
information from the computer to the external environment. The bandwidth is the number of information
bytes transferred per second. The bandwidth can be expressed as a maximum or peak that involves short
bursts of I/O communication. On the other hand, the overall performance can be represented as the average
bandwidth. The latency of the hardware/software is the response time of the interface. It is measured in
different ways depending on the situation. For an input device, the interface latency is the time between
when new input is available, and the time when the data is transferred into memory. For an output device,
the interface latency is the time between when the output device is idle, and the time when the interface
writes new data. A real time system is one that can guarantee an upper bound on the interface latency. The
following table illustrates specific ways to calculate latency. In each case, however, latency is the time
between when the need arises to the time the need is satisfied.

The time a need arises The time the need is satisfied
new input is available the input data is read
new input is available the input data is processed
output device is idle new output data is written
sample time occurs ADC is triggered, input data
periodic time occurs output data, DAC is triggered
control point occurs control system executed

Table 13.1. Interface latency is a measure of the response time of the computer to a hardware event.

We can also define device latency as the response time of the external I/O device. For example, if
we request that a certain sector be read from a disk, then the device latency is the time it takes to find the
correct track and spin the disk (seek) so the proper sector is positioned under the read head. After we send
an image file to the printer, the device latency is the time it takes to actually print the image.

If we consider the busy/done I/O states shown in Figure 13.1, the latency is the time from busy to
done state transition to the time of the done to busy state transition. Sometimes we are interested in the
worst case (maximum) latency and sometimes in the average. If we can put an upper bound on the latency,
then we define the system as real time. A number of applications involve performing I/O functions on a
fixed interval basis. In a data acquisition system, the ADC is triggered (a new sample is requested) at the
desired sampling rate.

New input is ready

Waiting for input
Device creates
new data

Software
 reads data
 asks for another

Busy

Done
Causes busy-wait
loop to complete

Service provided

Done
Output device idle

Busy
Performing output

Device completes
output operation

Software
 writes new data
 asks device to output

Causes busy-wait
loop to complete

Service provided

Figure 13.1. I/O devices set a flag when it needs software service, software clears the flag.

EE345M/EE380L.6 Page 13.2

Checkpoint 13.1: What is the difference between bandwidth and latency?

Observation: The same trigger flag you would have used for busy-waiting or interrupting will be
used to initiate direct memory access.

2. High speed applications
 Before introducing the various solutions to a high-speed I/O interface, we will begin by presenting
some high speed applications.

2.1. Mass Storage
The first application is mass storage including floppy disk, hard disk, tape, and CD ROM. Writing data to
disk with these systems involves

1) establishing the physical location to write, record head at the proper block, sector, track…
2) specifying the block size
3) waiting for the physical location to arrive under the record head
4) transmitting the data from memory to the disk.

Reading data from disk with these systems is similar and involves
1) establishing the physical location to read, read head at the proper block, sector, track, …
2) specifying the block size
3) waiting for the physical location to arrive under the read head
4) receiving the data from the disk and transferring it to memory.

Under most situations the size of the data block transferred is fixed. The time to locate the physical location
is called the seek time. The seek time has a significant impact on the disk performance. First the data must
be found (seek), then the data must be transferred. The bandwidth depends on the rotation speed of the disk
and the information density on the medium. The transfer rates vary according to the physics of the drive

A 7200 RPM hard drive can read at 70 megabytes/sec
A 52X CD-ROM has a peak bandwidth of 7.8 megabytes/sec
A 16X DVD writer can handle 22 megabytes/sec
A Class 2 SD card can write data at 2 megabytes/sec
An SATA channel can transfer up to 300 megabytes/sec

Original CD drives could read data at 150 kilobytes per second, and as faster drives arrived, manufacturers
referred to their read speeds as a multiple of the original speed, referred to as X. Therefore, a 2X CD drive
reads data at 300 kilobytes/sec. For DVDs the speeds are 9 times faster than CDs. I.e., a 1X DVD can
read/write at 1,385,000 bytes/sec. Therefore, a 16X DVD can transfer at 16 times faster.

Figure 13.2. SD cards have a NAND flash and a controller..

SD Cards and SDHC Cards have Speed Class Ratings defined by the SD Association. The SD Speed Class
Ratings specify the following minimum write speeds based on "the best fragmented state where no memory
unit is occupied": [www. SDCard.org]

EE345M/EE380L.6 Page 13.3

 Basic 900 kBytes/sec 6x in CD units
 Class 2 2 MByte/s 13x in CD units

Class 4 4 MByte/s 26x in CD units
Class 6 6 MByte/s 40x in CD units

There is a wide range of disk speeds, but it is important to note that for most situations, the disk bandwidth
will be less than the computer bus bandwidth, but greater than the maximum bandwidth that a software-
controlled interface can achieve. If the disk interface is not buffered, then the interface must response to
each data byte at a rate as fast the peak disk bandwidth. For example in a disk read, once the data becomes
available, the interface must capture it and store it in memory, before the next data becomes available. If we
do not meet the response time requirement in the disk interface, the rotation speed will have to be reduced.
Notice because of the seek time (time for the physical location to arrive under the head), the average and
peak bandwidth will be quite different. Also notice that without buffering, the maximum interface latency
will be inversely related to the peak bandwidth.

read/write
head

track

 read from disk

write to disk
memory

block

Figure 13.3. Data to/from the read/write head of a hard drive has a high bandwidth.

Checkpoint 13.2: What happens if we are reading data off a hard drive do not satisfy the latency
requirement? In other words, the read data is ready, but we do not capture it in time.

2.2. High Speed Data Acquisition

 Examples of high speed data acquisition are CD-quality sound recording (16-bit, 2 channel, 44
kHz), real time digital image recording and digital scopes (8-bit 200 MHz). Sound recording actually has
two high speed data channels: one for recording into memory, and a second for storing the memory data on
hard disk or CD. A spectrum analyzer combines the high speed data acquisition of a digital scope, with the
Discrete Fourier Transform (DFT) to visualize the collected data in the frequency domain. In the context of
this chapter, we will define a high speed data acquisition as one that samples faster than a software-
controlled interface would allow.

memory
buffer

Data
Acquisition

System

sound data CD data

Figure 13.4. Sound data from the microphone is stored in memory, processed, then saved on CD.

EE345M/EE380L.6 Page 13.4

Checkpoint 13.3: What happens to the sound recording if data is missed?

2.3. Video Displays
 Real time generation of TV or video images requires an enormous data bandwidth. Consider the
information bandwidth required to maintain an image on a graphics display. A VGA image is 256 colors
(8-bit), 480 rows, 640 columns and is refreshed at about 60Hz. Calculating the bandwidth in bytes/sec, we
get 1*480*640*60, which is 18,432,000 bytes/sec. Luckily, we don’t have to communicate each pixel for
each image, but rather can just transmit the changes from the previous image. In order to achieve the
necessary bandwidth, video interface hardware will use a combination of DMA and dual port memories.

memory
buffer

Video
Display
System

image data

Figure 13.5. Image data from memory is displayed on the graphics screen.

2.4. High Speed Signal Generation

 Examples of high speed signal generation are CD-quality sound playback (16-bit, 2 channel, 44
kHz), and real time waveform generation. Sound playback also has two high speed data channels: one for
loading sound data into memory from CD, and a second for playing the memory data out to the speakers. In
the context of this chapter, we will define a high speed interface as one that samples faster than a software-
controlled interface would allow.

memory
buffer

Sound
Playback
System

sound data

CD data

Figure 13.6. Sound data from the CD is loaded in memory, processed, then output to the speakers.

2.5. Network Communications
 For many networks the communication bandwidth of the physical channel will exceed the ability
of the software to accept or transmit messages. For these high speed applications, we will look for ways to
decouple the software that creates outgoing messages and processes incoming messages from the hardware
that is involved in the transmission and reception of individual bits. Because the network load will vary, the
average bandwidth (determined by how fast the transmission software can create outgoing messages and
the reception software can process incoming messages) will be slower than the peak/maximum bandwidth
that is achieved by the network hardware during transmission. This mismatch allows one network to be
shared among multiple potential nodes.

EE345M/EE380L.6 Page 13.5

network

message
memory
buffer

Network
Interface memory

buffer

Network
Interface

Figure 13.7. Message data is transmitted from the buffer of one computer to the buffer of another.

Checkpoint 13.4: What happens in a communication system when packets are lost?

3. General Approaches to High Speed Interfaces
3.1. Hardware FIFO

 If the software-controlled interface can handle the average bandwidth, but fails to satisfy the
latency requirements, then a hardware FIFO can be placed between the I/O device and the computer. A
common application of the hardware FIFO is the serial interface. Assume in this situation, the average
serial bandwidth is low enough for the software to read the data from the serial port and write it to memory.
The latency requirement of a USART serial input port like the STM32F103 is the time it takes to transmit
one data frame. To reduce this latency requirement (without changing the average bandwidth requirement)
we can add a hardware FIFO between the receive shift register and the receive data register, as illustrated in
the following figure.

STM32F103 USART
stop 7 6 5 4 3 2 1 0 start

DR

RxD

Software

Data

Shift
clock

16550 UART
stop 7 6 5 4 3 2 1 0 start

16-byte FIFO

RxD

Software

Data

Shift
clock

DR

Figure 13.8. The 16550 UART employs a 16 byte FIFO to reduce the latency requirement of the interface.

Observation: With a serial port that has a shift register, a FIFO of size n, and one data register,
the latency requirement of the input interface is the time it takes to transmit n+1 data frames.

A hardware FIFO, placed between the SCI data register and the transmit shift register, allows the software
to write multiple bytes of data to the interface, and then perform other tasks while the frames are being sent.

3.2. Dual Port Memory
 One approach that allows a large amount of data to be transmitted from the software to the
hardware is the dual port memory. A dual port memory allows shared access to the same memory between
the software and hardware. For example the software can create a graphics image in the dual port memory
using standard memory write operations. At the same time the video graphics hardware can fetch
information out of the same memory and display it on the computer monitor. In this way, the data need not
be explicitly transmitted from the computer to the graphics display hardware. To implement a dual port
memory, there must be a way to arbitrate the condition when both the software and hardware wish to access
the device simultaneously. One mechanism to arbitrate simultaneous requests is to halt the processor using
a MRDY signal so that the software temporarily waits while the video hardware fetches what it needs.
Once the video hardware is done, the MRDY signal is released and the software resumes. Notice that
except for the access conflict, both the software and graphics hardware can operate simultaneously at full
speed.

EE345M/EE380L.6 Page 13.6

memory

addr data

computer
bus

addr data

graphics
hardware

addr data

MRDY

Figure 13.9. A dual port memory can be accessed by two different modules.

Checkpoint 13.5: Explain how the bidirectional tristate buffers connected to the memory data
lines in Figure 13.9 work.

3.3. Bank-Switched Memory

 Another approach similar to the dual port memory is the bank-switched memory. A bank-switched
memory also allows shared access to the same memory between the software and hardware. The difference
between bank-switched and dual port, is the bank-switched memory has two modes. In one mode (M=1),
the computer has access to memory bank A, and the I/O hardware has access to memory bank B. In the
other mode (M=0), the computer has access to memory bank B, and the I/O hardware has access to
memory bank A. Because access is restricted in this way, there are no conflicts to resolve.

memory
bank A
addr data

computer
bus

addr data

I/O
hardware

addr data

M

memory
bank B

addr data

Figure 13.10. A bank-switched memory can be accessed by two different modules, one at a time.

Observation: With a bank-switched memory, the latency requirement of the software is the time it
takes the hardware to fill (or empty) one memory bank.

 Many high speed data acquisition systems employ this approach. The ADC hardware can write
into one bank while the computer software processes previously collected data in the other. When the ADC
sampling hardware fills a bank, the memory mode is switched, and the software and hardware swap access
rights to the memory banks. In a similar way, a real time waveform generator or sound playback system
can use the bank-switched approach. The software creates the data and stores it into one bank, while the

EE345M/EE380L.6 Page 13.7

hardware reads data from the other bank that was previously filled. Again, when the hardware is finished,
then the memory bank mode is switched.

Checkpoint 13.6: How would you redesign the bank-switched memory in Figure 13.10 if the
communication channel were simplex (data flows left to right only)?

4. Fundamental Approach to DMA
 With a software-controlled interface (gadfly or interrupts) if we wish to transfer data from an input
device into RAM, you must first transfer it from input to the processor, then from the processor into RAM.
In order to improve performance, we will transfer data directly from input to RAM or RAM to output using
Direct Memory Access, DMA. Because DMA bandwidth can be as high as the bus bandwidth, we will use
this method to interface high bandwidth devices like disks and networks. Similarly, because the latency of
this type of interface depends only on hardware and is usually just a couple of bus cycles, we will use DMA
for situations that require a very fast response. On the other hand, software-controlled interfaces have the
potential to perform more complex operations than simply transferring the data to/from memory. For
example, the software could perform error checking, convert from one format to another, implement
compression/decompression, and detect events. These more complex I/O operations may preclude the
usage of DMA.

4.1. DMA Cycles
 During a DMA read cycle, the processor is halted, and data is transferred from memory to output
device. During a DMA write cycle, the processor is halted and data is transferred from input device to
memory. In some DMA interfaces, two DMA cycles are required to transfer the data. The first DMA cycle
brings data from the source into the DMA module, and the second DMA cycle sends the data to its
destination.

processor

RAM

ROM

Input
Devices

Input
Signals

Output
Devices

Output
Signals

Bus

data

DMA Read Cycle

Figure 13.11. A DMA read cycle copies data from RAM or ROM to an output device.

data
processor

RAM

ROM

Input
Devices

Input
Signals

Output
Devices

Output
Signals

Bus DMA Write Cycle

Figure 13.12. A DMA write cycle copies data from the input device into RAM.

4.2. DMA Initiation
 We can classify DMA operations according to the event that initiates the transfer. A software
initiated transfer begins with the program setting up and starting the DMA operation. Using DMA to
transfer data from one memory block to another greatly speeds up the function. The efficiency of memory
block transfers is very important in larger computer systems. Benchmarks on many microcontrollers show
that even for small block sizes it is faster to initialize a DMA channel and perform the transfer in hardware.
As the block size increases the performance advantage of DMA hardware over traditional software
becomes more dramatic.

EE345M/EE380L.6 Page 13.8

 Most DMA applications involve a hardware initiated DMA transfer. For an input device, the
DMA is triggered on new data available. For an output device, the DMA is triggered on output device idle.
For periodic events, like data acquisition and signal generation, the DMA is triggered by a periodic timer.
The difference with DMA is that the servicing of the I/O need will be performed by the DMA controller
hardware without software having to explicitly transfer each byte.

4.3. Burst versus Cycle Steal DMA
 When the desired I/O bandwidth matches the computer bus bandwidth, then the computer can be
completely halted, while the block of data is transferred all at once. Once an input block is ready, a burst
mode DMA is requested, the computer is halted, and the block is transferred into memory.

input block ready

CPU CPU DMA DMA DMA DMA DMA DMA DMA DMA CPU CPU

DMA done

Figure 13.13. An input block is transferred all at once during burst mode DMA.

Figure 13.13 describes an input interface, but the same timing occurs on an output interface using burst
mode DMA. For an output interface, the DMA is requested when the interface needs another block of data.
During the burst mode DMA, the computer is halted, and an entire block is transferred from memory to the
output device.
 If the I/O bandwidth is less than the computer bus bandwidth, then the DMA hardware will steal
cycles and transfer the data one DMA cycle at a time. In cycle steal mode, the software continues to run,
although a little bit slower. In either case the processor is halted during the DMA cycles.

input byte ready

CPU CPU DMA DMA DMACPU CPUCPU CPU CPU CPU CPU

input byte ready input byte ready

Figure 13.14. Each time an input byte is ready it is transferred to memory using cycle steal DMA.

The above figure describes an input interface, but the same timing occurs on an output interface using cycle
steal mode DMA. For an output interface, the DMA is requested when the interface needs another byte of
data. During the cycle steal DMA, one byte is transferred from memory to the output device.

Observation: Some computers must finish the instruction before allowing a burst-DMA. In this
situation, the latency will be higher than cycle steal DMA, which does not need to finish the
current instruction.

 Since most I/O bandwidths are indeed less than the memory bandwidth, one technique to enhance
speed is I/O buffering. In this approach a dedicated I/O memory buffer exists in the I/O interface hardware.
This buffer is like the bank-switched memory discussed earlier. For example, on a hard disk read block
operation, raw data comes off the disk and into the buffer. During this time the processor is not halted.
When the buffer is full, burst DMA is used to transfer the data into the system memory. Similarly on a hard
disk write block operation, the software initiates a burst DMA to transfer data from system memory into the
I/O buffer. Once full, the I/O interface can write the data onto the disk.

Checkpoint 13.7: What is the maximum latency in a cycle steal DMA system?

4.4. Single Address versus Dual Address DMA

 Some computer systems allow the transfer of data between the memory and I/O interface to occur
in one bus cycle, while others need two bus cycles to complete the transfer. In a single address DMA cycle,
the address and R/W line dictate the memory function to be performed and the I/O interface is
sophisticated enough to know it should participate in the transfer.
 In this single address example, the disk interface is reading bytes from a floppy disk. Cycle steal
mode will be used because the floppy disk bandwidth is slower than the bus. When a new byte is available,

EE345M/EE380L.6 Page 13.9

Request will be asserted and this will request a DMA cycle from the DMA controller. The DMA controller
will temporarily suspend the processor and drive the address bus with the memory address and the R/W to
write. During this cycle the DMA controller will respond to the floppy interface by asserting the Ack. The
floppy uses the Ack (ignoring the address bus and R/W) to know when to drive its data on the bus.

memory

SizeDestination

DMA Controller interface

FDR

Request Request

Addr
R/W

Halt HaltAck

processor
Halt HaltAck

Addr
R/W

AckAck

Figure 13.15. Block diagram showing the modules involved in a floppy disk read.

Request

Halt

HaltAck

Ack

Addr (by CPU)

R/W (by CPU)

Addr (by DMAC)

R/W (by DMAC)

Data

bus cycle type

floppy
data

memory

write

CPU DMA CPU

Figure 13.16. Timing diagram of a single address DMA-controlled floppy disk read.

 In a dual address DMA cycle, two bus cycles are required to achieve the transfer. In the first cycle
the data is read from the source address, and copied in the DMA controller. During the first cycle the
address bus contains the source address and R/W signifies read. The information from the data bus is saved
in the Temp register within the DMA controller. In the second cycle, the data is transferred to the
destination address. During the second cycle, the address bus contains the destination address, the data bus
has the Temp data, and R/W signifies write.

EE345M/EE380L.6 Page 13.10

 In this dual address example, the SPI interface is receiving bytes from a synchronous serial
network. Cycle steal mode will be used because the SPI bandwidth is slower than the bus. When a new byte
is available, Request will be asserted and this will request a DMA cycle from the DMA controller. The
DMA controller will temporarily suspend the processor and first drive the address bus with the SPI data
register address (R/W=read), then in the second cycle the DMA controller will drive the address bus with
the memory address (R/W=write). The SPI knows it has been serviced, because its data register has been
read.

Observation: The single address DMA is twice as fast as dual address DMA.

memory

SizeDestination

DMA Controller SPI

SPDR
SPIF Request

Addr
R/WHalt HaltAck

processor
Halt HaltAck

Addr
R/W

MItemp

Figure 13.17. Block diagram showing the modules involved in a SPI read.

Request=SPIF

Halt

HaltAck

Addr (by CPU)

R/W (by CPU)

Addr (by DMAC)

R/W (by DMAC)

Data

bus cycle type

SPI
data

SPDR

read

CPU DMA CPU

SPI
data

memory

write

DMA

Figure 13.18. Timing diagram of a dual address DMA-controlled SPI read.

Observation: The dual address DMA can be used with I/O devices not configured to support
DMA.

EE345M/EE380L.6 Page 13.11

5. DMA programming approach
 Although DMA programming varies considerably from one system to another, there are a few
initialization steps that most require. The following table lists the mode parameters that must be set to
utilize DMA. There are two categories of DMA programming: initialization and completion. During
initialization, the software sets the DMA parameters, so that the DMA will begin.

parameter possible choices
what initiates the DMA software trigger, input device, output device, periodic timer
type burst versus cycle steal
autoinitialization mode single event or continuous transfer
precision 8-bit byte or 16-bit word or 32-bit
mode single address or dual address
priority Should software completely halt? Should interrupts be serviced during DMA?
synchronization set gadfly flag, or interrupt on block transfer complete

Table 13.2. DMA initialization usually involves specifying these parameters.

At the end of a block transfer, a done flag is set and a number of additional actions may occur. If the system
is armed, an interrupt can be generated. At the end of a block transfer in a continuous transfer DMA, the
parameters are autoinitialized, so that the DMA process continues indefinitely. This next table lists
additional parameters we will need to initialize

parameter definition
source address address of the module (memory or input) that generates the data
inc/dec/static automatically +1/-1/+01 the source address after each transfer
destination address address of the module (memory or output) that accepts the data
inc/dec/static automatically +1/-1/+0 the destination address after each transfer
block size fixed number of bytes to be transferred

Table 13.3. More DMA initialization parameters.

6. DMA on the STM32F103
6.1. STM32F103 DMA block diagram

1 Obviously the DMA controller will +2/-2/+0 when the precision is 16 bits

EE345M/EE380L.6 Page 13.12

The DMA controller performs direct memory transfer by sharing the system bus with the Cortex™-M3
core. The DMA request may stop the CPU access to the system bus for some bus cycles, when the CPU
and DMA are targeting the same destination (memory or peripheral). The bus matrix implements round-
robin scheduling, thus ensuring at least half of the system bus bandwidth (both to memory and peripheral)
for the CPU.

 Interrupts on

Transfer complete (TCIF/TCIE)
Half-transfer flag (HTIF/HTIE) to implement double buffering
Transfer error (TEIF/TEIE)

 Separate RAM, Flash buses so DMA does not slow down instruction fetches

6.2. STM32F103 Continuous ADC sampling from Blinky

DMA configuration DMA1_Channel1->CCR = 0x2520
 Bit 14 MEM2MEM: Memory-to-memory transfers
 Bits 13:12 PL[1:0]: Four levels of priority
 Bits 11:10 MSIZE[1:0]: Memory 8/16/32-bit data widths
 Bits 9:8 PSIZE[1:0]: Peripheral 8/16/32-bit data widths
 Bit 7 MINC: Memory increment mode (increment or not)
 Bit 6 PINC: Peripheral increment mode (increment or not)
 Bit 5 CIRC: Circular mode to implement continuous ADC sampling
 Bit 4 DIR: Data transfer direction

Bit 3 TEIE: Transfer error interrupt enable
Bit 2 HTIE: Half transfer interrupt enable
Bit 1 TCIE: Transfer complete interrupt enable
Bit 0 EN: Channel enable

void adc_Init (void) {
// GPIOA->CRL &= ~0x0000000F; // set PIN1 as analog input (see stm32_Init.c)
 RCC->AHBENR |= (1<<0); // enable peripheral clock for DMA
 DMA1_Channel1->CMAR = (u32)&ADC_ConvertedValue;// set channel1 memory address
 DMA1_Channel1->CPAR = (u32)&(ADC1->DR); // set channel1 peripheral address
 DMA1_Channel1->CNDTR = 1; // transmit 1 word
 DMA1_Channel1->CCR = 0x00002520; // configure DMA channel
 DMA1_Channel1->CCR |= (1 << 0); // DMA Channel 1 enable
 RCC->APB2ENR |= (1<<9); // enable peripheral clock for ADC1
 ADC1->SQR1 = 0x00000000; // only one conversion
 ADC1->SMPR2 = 0x00000028; // set sample time channel1 (55,5 cycles)
 ADC1->SQR3 = 0x00000001; // set channel1 as 1st conversion
 ADC1->CR1 = 0x00000100; // use independent mode, SCAN mode
 ADC1->CR2 = 0x000E0103; // use data align right, continuous conversion
 // EXTSEL = SWSTART enable ADC, DMA mode, no external Trigger
 ADC1->CR2 |= 0x00500000; // start SW conversion
}

