Figure 14.1. A layered approach to communication systems.

1) Address information field
 - physical address specifying the destination/source computers
 - logical address specifying the destination/source processes (e.g., users)

2) Synchronization or handshake field
 - Physical synchronization like shared clock, start and stop bits
 - OS synchronization like request connection or acknowledge
 - Process synchronization like semaphores

3) Data field
 - ASCII text (raw or compressed)
 - Binary (raw or compressed)

4) Error detection and correction field
 - Vertical and horizontal parity
 - Checksum
 - Logical redundancy check (LRC)
 - Block correction codes (BCC)
• The general transmission system depicted below:
 – employs some transmission medium that permits some form of energy to be carried from the transmitter to the receiver
 – the energy may vary continuously with time or transition between discrete values
 – ultimately, the energy is employed to represent information
 • audio, video, image, text, abstract, etc.

![Communication channel diagram](image)

• The issues along the way:
 – attenuation
 • energy is lost to the medium and surroundings
 – distortion
 • channel treats signals differently based upon frequency, intensity (amplitude), etc.
 – noise
 • energy is combined with the signal to produce a new signal

• How rapidly can information (bits) be communicated via a particular transmission system?
• That depends upon:
 – the amount of energy used in transmitting each signal
 – the distance between transmitter and receiver — attenuation and distortion
 – the amount of noise associated with the channel
 – the bandwidth of the channel

• **Shannon channel capacity:**
 \[C = W \log_2 (1 + \text{SNR}) \text{ b/s} \]

• Example: Telephone channel
 – \(W = 3.4 \text{ kHz and SNR} \approx 38 \text{ dB} \Rightarrow \text{SNR} \approx 6310 \)
 – \(C = 3.4 \text{ kHz} \log_2 (1 + 6310) = 3.4 \text{kHz} \times 12.62 \text{ b/s} \)

 \(= 42.9 \text{ kb/s} \)

Controller Area Network (CAN).
 - High-integrity serial communications
 - Real-time applications
 - Up to 1 Mbits/second
 - Originally for use in automobiles,
 - Can have up to 112 nodes
 - Half duplex (both directions, but only one direction at a time)
MCP2551

Figure 9.3. Block Diagram of a CAN communication system (Rs=0V, Vdd=5V, Vref=nc)

```c
CANBitRateSet(CAN0_BASE, 80000000, CAN_BITRATE);
```

by Jonathan W. Valvano
There must be a $120\,\Omega$ resistor on each end of the CAN cable, and no resistor on middle nodes.

\[
f \approx \frac{1}{\tau} \\
v = V F* c = 2\cdot10^8 \text{ m/s} \\
\lambda = \frac{v}{f} \approx v \cdot \tau
\]

a transmission line if $L > \lambda/4$

slew rate = $25V/\mu s$

$1V$ in 40 ns, $\lambda = 2\cdot10^8 \text{ m/s} \quad 40\cdot10^{-9}s = 8m$

$\lambda/4 = 2m$

Similar to wire-or or open collector logic

Dominant state is logic low

Recessive state is logic high

![Voltage specifications for the recessive and dominant states.](image)

Figure 14.6. Voltage specifications for the recessive and dominant states.

Four message types or frames

- Data Frame,
- Remote Frame,
- Error Frame, and
- Overload Frame.

```
TxMessage.RTR = CAN_RTR_DATA;
```
Arbitration Field

- 11-bit identifier specifies data type (not address)
- Ping,
- IR, or
- Touch sensor
- priority handled by dominate wins over recessive
- lower IDs are higher priority
- RTR=IDE=0 means 11-bit standard format data frame

Control Field

- DLC, which specifies the number of data bytes (0 to 8)

Data Field

- contains zero to eight bytes of data.

CRC Field

- 15-bit checksum used for error detection.

\[
\text{Bandwidth} = \frac{\text{number of information bits/frame}}{\text{total number of bits/frame}} \times \text{baud rate}
\]

Number of bits in a CAN message frame.

- ID (11 or 29 bits)
- Data (0, 8, 16, 24, 32, 40, 48, 56, or 64 bits)
- Remaining components (36 bits)
 - SOF (1)
 - RTR (1)
 - IDE/r1 (1)
 - r0 (1)
 - DLC (4)
 - CRC (15)
 - ACK/EOF/intermission (13)
TxMessage.StdId = id; // message ID
TxMessage.IDE = CAN_ID_STD; // 11-bit address
TxMessage.DLC = 2; // 0 to 8

How many bits in a frame:
- Standard CAN 2.0A frame with 4 data bytes?
- Extended CAN 2.0B frame with 8 data bytes?

Bit Stuffing
Where is the clock? (Answer: in the data)
Data line needs edges so the receiver can synchronize
A long sequence of 0’s or a long sequence of 1’s,
Insert a complementary bit after five bits of equal value.
CAN 2.0A may add 3+n stuff bits (n is number of bytes)
CAN 2.0B may add 5+n stuff bits.
Receiver has to un-stuff

Filter on receive messages
Which IDs to accept?
- \textbf{IdMsg} is the ID of the incoming message
- \textbf{IdRule} is the ID setup in the filter rule
14 filters: rules accept if ID matches
Accept if \((\text{IdMsg} \& \text{Mask}) == \text{(IdRule \& Mask)}\)
Accept if IdMsg is in the list
Into which FIFO to put message?
ID+MASK (0 don’t care, 1 bit must match) \textbf{CAN_FilterMode_IdMask}
list of IDs \textbf{CAN_FilterMode_IdList}
CAN1 (Master) with 512 bytes SRAM

Embedded Microcomputer Systems Lecture 23.8

by Jonathan W. Valvano
Why did it take 130\(\mu\)s to execute \texttt{CAN_Transmit}?
Why does the RxCan have more stuff than the TxCan?

What is the total number of bits in this frame?
Why did it take 110\(\mu\)s to complete an entire frame?
What is that blimp on TxCan?
Where is the end of the frame?
What is the bandwidth?

\textbf{Synchronization issues}
- How to connect transmitter/receiver threads?
 - How to start, handshake
 - Race conditions
- How to prevent streaming data from stalling?
 - Priority, buffer size

by Jonathan W. Valvano