
Real Time Operating Systems Lecture 25.1

Memory Manager
http://users.ece.utexas.edu/~valvano/arm/Heap_4F120.zip

Definitions
Internal fragmentation
 convenient of the operating system
 contains no information
 wasted in order to improve speed or provide for a simpler implementation.
 wasted storage is inside the allocated region.

External fragmentation
 largest block that can be allocated is less than the total amount of free space
 occurs because memory is allocated in contiguous blocks
 occurs over time as free storage becomes divided into many small pieces.
 Worse when application allocates/deallocates blocks of storage of varying sizes.
 unusable storage is outside the allocated regions.

Explain what happens if
char v1;
short v2;
char v3;
long v4;

Think of the four storage categories, give examples of each:
 Private scope, temporary allocation
 Private scope, permanent allocation
 Public scope, temporary allocation
 Public scope, permanent allocation
heap
 large piece of memory
 managed by the operating system
 used for temporary allocation
 initialization Heap_Init called by OS during the initialization process
 allocation Heap_Malloc called by user or OS
 deallocation Heap_Free called by user or OS
 statically allocated storage assigned by the compiler (2000-byte heap)

static long Heap[500];

Real Time Operating Systems Lecture 25.2

Heap

Initial heap

-498

-498

Figure 3.7. An initial heap of 2000 bytes is one block of 498 words (each box is 32 bits).

The user or OS itself calls Heap_Malloc when it needs a contiguous blocks of
memory. If the memory is needed for a long time, a pointer to it should be stored in
permanent memory. For example, if a 20-byte buffer is needed, we could call
char *Pt;
void UserStart(void){ // called at the beginning
 Pt = Heap_Malloc(20);
}
When the program is finished with the block, it is released by calling Heap_Free.
void UserFinish(void){ // called at the end
 Heap_Free(Pt);
}

Checkpoint 3.7: What happens if a function allocates a block, stores a pointer to the
block in a local variable, and then returns from the function without deallocating the
block?

Saving the pointer to an allocated block in a local variable does not make sense. If the
memory is needed for the duration of one function call, the block should be allocated on
the stack. For example, if a 20-byte buffer is needed, we could call
void User(void){ char buffer[20];
// use 20-byte buffer
}

Header

Trailer

Used block

+5

+5

Header

Trailer

Free block

-100

-100
32 bits

Figure 3.8. Each block has a header and a trailer.

Real Time Operating Systems Lecture 25.3

When allocating blocks we can use a number of algorithms to choose which block to
allocate. Let n be the number of bytes requested by Heap_Malloc.

 First fit uses the first free block with a size greater than or equal to n.
 Best fit uses the smallest free block with a size greater than or equal to n.
 Worst fit uses the largest free block with a size greater than or equal to n.

Depending on the allocation pattern of the user program, these three allocation methods
will have differing levels of external fragmentation. The implementation on the book web
site as Heap_xxx.zip uses first fit.

Checkpoint 3.8: How would you change the way free blocks are organized to
implement best fit?

block is allocated with Heap_Malloc
 find a free block
 free block is divided to two parts
 new free block is smaller,
 a pointer to the allocated block is returned
 block may not be large enough to split (allocate the big block, internal frag)

Header

Trailer

Before

-100

-100

Pt=Heap_Malloc(40);

After

+20

+20
-78

-78

Pt

Figure 3.9. Example, the user calls Pt=Heap_Malloc(80).

Checkpoint 3.9: In Figure 3.9, why does the sum of the parts not equal the whole?
In particular, 20+78 does not equal 100.

When deallocating a block with Heap_Free, there are four cases:
 no merge,
 merge above,
 merge below and
 merge both above and below.
.

Real Time Operating Systems Lecture 25.4

+20
+10

+10

+10

+10
+20

Before

Heap_Free(Pt);

After

Pt

-20
+10

+10

+10

+10
-20

FreeUsed

Figure 3.10. Example, the user calls Heap_Free(Pt) (no merge).

Before

+20
+10

+10

-10

-10
+20

Heap_Free(Pt);

After

Pt

-32
+10

+10

-32

Free

Used

Figure 3.11. Two blocks are merged during a call to Heap_Free.

Checkpoint 3.10: What happens if you continue to access a memory block after the
block is deallocated?

The Knuth buddy allocation maintains the heap as a collection of blocks each with
a size of 2m. When the user requests a block of size n, it will find the smallest block with
2m greater than or equal to n. For example, if the smallest block is size 1024, and the user
requests a block of 100 bytes, the 1024-byte block will be divided into two 128-byte
blocks, one 256-byte block and one 512-byte blocks. The user will be given the 128-byte
block. The 28 extra bytes allocated to the user is internal fragmentation.

Real Time Operating Systems Lecture 25.5

Final exam 2010

(20) Question 8. Implement a memory manager for fixed sized blocks. Let the block
size be
#define SIZE 100 // size in bytes
Let the number of blocks be
#define NUM 10 // number of blocks

For these two definitions, 1000 bytes of memory will be managed. Create three
functions: initialization, allocate and deallocate.

