Real Time Operating Systems Lecture 28.1

Micrium uCOS

I3 Micrium

Licensing agﬂ_%eme"ts =) AppNotes AN-1018
(If pC/OS-1l is used =) ANLox-RTOS
commercially)

) AN1018-uCO5-I-Cortex-M3

(I.\‘.n(?nt_act [Licensing
MW TICTum Com, & I3 software
for pricing

=) uccru pC/OS-II

/ B) Cortex-M3 The Real Time Kernel
D 1ARr

uC/CPU = RW :
CPU Port Flles = £ ucos-I ahaer)
£ Doc) documentation
=) Ports
= I) ARM-Cortex-M3 Cortex-M3
= [Generic HC/OS-1I port
2 1ar
.) Reclvied uC/0S-11 processor
2 Source independent source
code

Cool features
1) Portable

by Jonathan W. Valvano

Real Time Operating Systems Lecture 28.2

Your Application
AFF.C
: LFF VECT.C
Section 5 AP CFG.H
INCLUDES.H
0S5 _CFG.H
: ' 1
0S_CORE.C
05 FLAG.C
0S_MBOX.C
05_MEM.C
pc/os-l 05 MUTEX.C
05 Q.C
Book 05 _SEM.C
0S_ TASK.C
05 TIME.C
05 TMR.C
ucos II.H
I Y
L
C/0S-ll ’
section3 | Cortex M3 Port g Section 6
05 CPU C.C mer W
0S CPU B.ASM =
05 _CPU.H
05 DEG.C I;
Section 2 ARM Cortex-M3 / Target Board
Compiler independent data types
typedef unsigned char BOOLEAN;
typedef unsigned char [INT8U;
typedef signed char INT8S;
typedef unsigned short INT16U;
typedef signed short INT16S;
typedef unsigned int INT32U;
typedef signed int INT32S;
typedef float FP32;
typedef double FP64;
2) User runs with PSP (process stack pointer)
0S_CPU_PendSVHandler
CPSID | ; Prevent interruption during context switch

by Jonathan W. Valvano

Real Time Operating Systems Lecture 28.3

MRS RO, PSP ; PSP is process stack pointer

CBz RO, 0S_CPU_PendSVHandler_nosave ; Skip save the first time

SUBS RO, RO, #0x20 ; Save remaining regs r4-11 on process stack
STM RO, {R4-R11}

LDR R1, =0STCBCur ; OSTCBCur->0STCBStkPtr = SP;

LDR R1, [R1]

STR RO, [R1] ; RO is SP of process being switched out

3) User can hook into OS (this is context switch)
PUSH {R14} ; Save LR exc_return value
LDR RO, =0STaskSwHook ; OSTaskSwHook();
BLX RO
POP {R14}

OSInitHookBegin()

OSInitHookEnd()

OSTaskCreateHook()

0STaskDelHook()

OSTaskldleHook()

OSTaskStatHook()

OSTaskStkInit()

0STaskSwHook()

OSTCBInitHook()

0STimeTickHook()

4) Board Support Package, Hardware Abstraction Layer, Device driver
I/O abstraction. It is often convenient to create a Board Support Package (BSP) for your target
hardware. A BSP could alow you to encapsul ate the following functionality:
Timer initialization
ISR Handlers
LED control functions
Reading switches
Setting up the interrupt controller
Setting up communication channel
CAN, 12C, ADC, DAC, SPI, serial,graphics
void LED_Init(void);
void LED _On(CPU_INTO8U led_id);
void LED OFFf(CPU_INTO8U led_id);
void LED Toggle(CPU_INTO8U led id);

5) Communication and synchronization (timeout, abort)
Message mail box
Message queue
Semaphores
Flags (software events)
Groups of flags
Names
pend/post, and/or

by Jonathan W. Valvano

Real Time Operating Systems Lecture 28.4

Mutex
/* Description: This function waits for a mutual exclusion semaphore.
Arguments : pevent pointer to event control block associated with mutex.

timeout optional timeout period (in clock ticks).
IT non-zero, your task will wait up to the specified time
IT you specify 0, however, will wait forever for resource
perr pointer to where an error message will be deposited.
0S_ERR_NONE successful and your task owns the mutex
0S_ERR_TIMEOUT not available within the “timeout”.
0S_ERR_PEND_ABORT mutex was aborted.
OS_ERR_EVENT_TYPE If you didn"t pass a pointer to a mutex
OS_ERR_PEVENT_NULL ®"pevent® is a NULL pointer
0S_ERR_PEND_ISR called from an ISR
OS_ERR_PIP_LOWER task priority that owns is HIGHER
0S_ERR_PEND_LOCKED called when the scheduler is locked
* Returns > none
* Note(s)l) The task that owns the Mutex MUST NOT pend on any other event
while it owns the mutex.
* 2) You MUST NOT change the priority of the task that owns the mutex
*/
void OSMutexPend (OS_EVENT *pevent, INT16U timeout, INT8U *perr)
INT8U OSMutexPost (0S_EVENT *pevent)
{

Other features a OS might include
1) Memory manager
2) Timedelay
3) Priority resolution table
4) Debugger aware

Reference Application Note AN-1018, www.Micrium.com
MicroC/OS-11 and MicroC/OS-I11 by Jean J Labrosse.

by Jonathan W. Valvano

