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Jonathan W. Valvano 
(20) Question 1. Here is one possible analog circuit that satisfies the specifications:
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(20) Question 2.  Consider a 128K by 8 bit static RAM interface.
Part a) Draw a combined read timing diagram assuming no cycle stretching.
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Part b) If ta is 35 ns, then RDA just overlaps RDR.

(20) Question 3. Conversions from real variables to fixed-point versions. Overflow will be handled
by promotion to 32-bits, performing the controller in 32-bit math, then performing a ceiling/floor
operation before demotion.

xstar = 100•X*
x(n) = 100•X(t)
u(n) = 1000•V(t)
e(n) = xstar - x(n)
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proportional term
Vp(t) = 0.0512•e(t) original proportional term
up(n) = 1000•0.0512•e(t) convert Vp to up
up(n) = 1000•0.0512•e(n)/100 convert e(t) to e(n)
up(n) = (512•e(n))/1000 make it fixed-point
up(n) = (64•e(n))/125 simplify

integral term
Vi(t) = 0.0408•∫e(τ)dτ original integral term
Vi(t) = 0.0408•∑e(τ)∆t approximate integration with sum
ui(n) = 1000•0.0408•∑e(τ)∆t convert Vi to ui
ui(n) = 1000•0.0408•∑e(n)∆t/100 convert e(t) to e(n)
ui(n) = 0.0408•∑e(n) simplify, ∆t = 0.1s
ui(n) = ui(n-1)+0.0408•e(n) simplify sum
ui(n) = ui(n-1)+408•e(n)/10000 make it fixed-point
ui(n) = ui(n-1)+51•e(n)/1250 simplify

put together
u(n) = up(n) + ui(n)

(10) Question 4. If the FIFO is big enough, then the system will run continuously if the sum of the
average execution times is less than 1/fs. In particular, the FIFO will not overflow. The system will
be real-time if the main program runs with interrupts enabled, and the other ISRs have short and
bounded execution times. So

1/fs > Adin+Fifo_Put+Fifo_Get+Process=(25+15+20+1000) = 1060 µsec
so

fs < 943 Hz

(10) Question 5.  First, write $15BCD in binary 0001,0101,1011,1100,1101. The offset is the
bottom 14 bits 01,1011,1100,1101 = $1BCD. The memory address is $8000+offset =$9BCD. The
program page number is the rest = 000101 = $05

PPAGE = 0x05;
data = *((char *)(0x9BCD));

Part b) Again, write $15BCD in binary 0001,0101,1011,1100,1101. The offset is the bottom 12 bits
1011,1100,1101 = $0BCD. The memory address is $7000+offset =$7BCD. The data page number
is the rest = 00010101 = $15

DPAGE = 0x15;
data = *((char *)(0x7BCD));

Part c) The two have separate windows. The data page window is $7000-$7FFF and program page
window is $8000-$BFFF. The RAM uses CSD and the ROM uses CSP0. So when 0x9BCD is
accessed CSP0 is active. When 0x7BCD is accessed CSD is active.
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(20) Question 6.  Develop an interrupt-based square-wave generator.
Part a) The header file has prototypes for public functions.
void Square_Start(unsigned short frequency); // units in Hz
// works from 1 to 10000 Hz
Part b) The implementation file has private variables and implementations.
unsigned short rate;
void Square_Start(unsigned short frequency){
long count;    // number of 125 cycles per toggle
  if((frequency>10000)||(frequency==0))
    return;
asm(" sei");        // make atomic
  TIOS |= 0x40;     // enable OC6
  DDRT |= 0x40;     // PT6 is output
  TSCR |= 0x80;     // enable
  TCTL1 = (TCTL1&0xCF)|0x10; // PT6 toggle (or TCTL1 = 0x10)
  count = 4000000L/frequency;
  TMSK2 = 0x30;     // start at 8 MHz
  while(count>65535){
    count = count>>1;  // half as many counts
    TMSK2++;           // twice the period
  }
  TMSK1 |= 0x40;    // Arm output compare 6
  rate = count;
  TFLG1 = 0x40;     // Initially clear C6F
  TC6 = TCNT+10;    // First right away
asm(" cli");
}

#pragma interrupt_handler TC6handler()
void TC6handler(void){
  if(--count == 0){
    PORTT ^= 0x40;     // toggle output
    count = maxCount;
  }
  TFLG1 = 0x40;     // ack C6F
  TC6 = TC6+800;    // Executed every 100us
}
#pragma abs_address:ffe2
void (*OCinterrupt_vector[])() = {
  TC6handler /* ffe2 TC6 */
}
#pragma end_abs_address


