
 EE345M Final Exam Solution Fall 2001 Page 1

Jonathan W. Valvano
(20) Question 1. Here is one possible analog circuit that satisfies the specifications:

+2.5

10kΩ10kΩ

10kΩ10kΩ

+12V

-12V

0.1µF

AD620

0.1µF

R = = 1kΩ
G

49.4kΩ
 50-1

REF43

+12V 0.1µF

V1

V2

3V =50(V -V)21

OP07

(20) Question 2. Consider a 128K by 8 bit static RAM interface.
Part a) Draw a combined read timing diagram assuming no cycle stretching.

Address

R/W

D7-D0 RDA

E 0

125
60

60CSD

10

20

20

30 0
D7-D0

60

RDR

RDA=(95,135)

RDR=(95,125)

ta =35

ta =35

=0

Part b) If ta is 35 ns, then RDA just overlaps RDR.

(20) Question 3. Conversions from real variables to fixed-point versions. Overflow will be handled
by promotion to 32-bits, performing the controller in 32-bit math, then performing a ceiling/floor
operation before demotion.

xstar = 100•X*
x(n) = 100•X(t)
u(n) = 1000•V(t)
e(n) = xstar - x(n)

 EE345M Final Exam Solution Fall 2001 Page 2

proportional term
Vp(t) = 0.0512•e(t) original proportional term
up(n) = 1000•0.0512•e(t) convert Vp to up
up(n) = 1000•0.0512•e(n)/100 convert e(t) to e(n)
up(n) = (512•e(n))/1000 make it fixed-point
up(n) = (64•e(n))/125 simplify

integral term
Vi(t) = 0.0408•∫e(τ)dτ original integral term
Vi(t) = 0.0408•∑e(τ)∆t approximate integration with sum
ui(n) = 1000•0.0408•∑e(τ)∆t convert Vi to ui
ui(n) = 1000•0.0408•∑e(n)∆t/100 convert e(t) to e(n)
ui(n) = 0.0408•∑e(n) simplify, ∆t = 0.1s
ui(n) = ui(n-1)+0.0408•e(n) simplify sum
ui(n) = ui(n-1)+408•e(n)/10000 make it fixed-point
ui(n) = ui(n-1)+51•e(n)/1250 simplify

put together
u(n) = up(n) + ui(n)

(10) Question 4. If the FIFO is big enough, then the system will run continuously if the sum of the
average execution times is less than 1/fs. In particular, the FIFO will not overflow. The system will
be real-time if the main program runs with interrupts enabled, and the other ISRs have short and
bounded execution times. So

1/fs > Adin+Fifo_Put+Fifo_Get+Process=(25+15+20+1000) = 1060 µsec
so

fs < 943 Hz

(10) Question 5. First, write $15BCD in binary 0001,0101,1011,1100,1101. The offset is the
bottom 14 bits 01,1011,1100,1101 = $1BCD. The memory address is $8000+offset =$9BCD. The
program page number is the rest = 000101 = $05

PPAGE = 0x05;
data = *((char *)(0x9BCD));

Part b) Again, write $15BCD in binary 0001,0101,1011,1100,1101. The offset is the bottom 12 bits
1011,1100,1101 = $0BCD. The memory address is $7000+offset =$7BCD. The data page number
is the rest = 00010101 = $15

DPAGE = 0x15;
data = *((char *)(0x7BCD));

Part c) The two have separate windows. The data page window is $7000-$7FFF and program page
window is $8000-$BFFF. The RAM uses CSD and the ROM uses CSP0. So when 0x9BCD is
accessed CSP0 is active. When 0x7BCD is accessed CSD is active.

 EE345M Final Exam Solution Fall 2001 Page 3

(20) Question 6. Develop an interrupt-based square-wave generator.
Part a) The header file has prototypes for public functions.
void Square_Start(unsigned short frequency); // units in Hz
// works from 1 to 10000 Hz
Part b) The implementation file has private variables and implementations.
unsigned short rate;
void Square_Start(unsigned short frequency){
long count; // number of 125 cycles per toggle
 if((frequency>10000)||(frequency==0))
 return;
asm(" sei"); // make atomic
 TIOS |= 0x40; // enable OC6
 DDRT |= 0x40; // PT6 is output
 TSCR |= 0x80; // enable
 TCTL1 = (TCTL1&0xCF)|0x10; // PT6 toggle (or TCTL1 = 0x10)
 count = 4000000L/frequency;
 TMSK2 = 0x30; // start at 8 MHz
 while(count>65535){
 count = count>>1; // half as many counts
 TMSK2++; // twice the period
 }
 TMSK1 |= 0x40; // Arm output compare 6
 rate = count;
 TFLG1 = 0x40; // Initially clear C6F
 TC6 = TCNT+10; // First right away
asm(" cli");
}

#pragma interrupt_handler TC6handler()
void TC6handler(void){
 if(--count == 0){
 PORTT ^= 0x40; // toggle output
 count = maxCount;
 }
 TFLG1 = 0x40; // ack C6F
 TC6 = TC6+800; // Executed every 100us
}
#pragma abs_address:ffe2
void (*OCinterrupt_vector[])() = {
 TC6handler /* ffe2 TC6 */
}
#pragma end_abs_address

