
 EE345M Final Exam Spring 2008 Page 1 of 8

Jonathan W. Valvano First Name: _______________ Last Name:____________________
May 10, 2008, 9am-12n
 Open book, open notes, calculator (no laptops, phones, devices with screens larger than a
TI-89 calculator, devices with wireless communication). Please don’t turn in any extra sheets.
(5) Question 1. If the CAN channel is noisy, it is possible that some bits will be transmitted in
error. Assume there are four nodes, one is transmitting and three are receiving. What happens if a
data bit is flipped in the channel due to noise being added into the channel?

(5) Question 2. Assume an analog input PAD0 is being sampled in the background. Data is piped
through a FIFO to a foreground thread, and there is a real-time OS with blocking semaphores. We
define time-jitter, δt, as the difference between when a periodic task is supposed to be run, and
when it is actually run. The goal of a real-time DAS is to start the ADC at a periodic rate, ∆t=1/fs.
Let tn be the nth time the ADC is started. In particular, the goal to make tn – tn-1 = ∆t. The jitter is
defined as the constant, δt, such that
 ∆t-δt < tn – tn-1 < ∆t+δt for all n.
Consider the situation where the time jitter is unacceptably large. Which modification to the system
will cause the largest improvement in time jitter? Just circle your selection.

A) Run the ADC in continuous mode

B) Convert from blocking semaphores to spinlock to semaphores

C) Change from round robin to priority thread scheduling

D) Set the ETRIG bit in ATDCTL2, and clear the ETRIGLE ETRIGP bits
specifying a falling edge hardware triggered ADC. Use the PWM mode on PT3 of
to create a squarewave with a period of ∆t, and connect PT3 to PAD7.

E) Increase the time you run with interrupts disabled.

 EE345M Final Exam Spring 2008 Page 2 of 8

(15) Question 3. Consider the following motor
interface. A series-wound DC motor, like the ones in the
robot kit, can be modeled by a series combination of a
resistor (the ohmic contribution of the long thin wires
used to wrap the electromagnets), an inductor
(physically resulting from the cylindrical manner in
which the electromagnets are wound), and an emf (a
voltage caused by the load torque applied from the shaft
back into the electromagnet). The resistance is what you
get when you measure the resistance of the motor with
an ohmmeter (a stopped motor, disconnected from
power). In this case, R = 50 Ω and L = 100 µH. Hint:
L/R is 2 µsec.

Part a) Under maximum load, the emf becomes –40V and about 1A flows through the motor. What
transistor do you choose for this interface (specify part number)? Why?

Part b) What value do you choose for Rb? Show your work using the symbols from the picture.

Part c) Initially the motor is off (no current to the motor). At time t=0, the digital port goes from 0
to +5 and transistor turns on. Assume for this section, the emf is zero (motor has no external torque
applied to the shaft) and the transistor turns on instantaneously, derive an equation for the motor (Ic)
current as a function of time.

IC

VCE
+
-+

-VBE

R

9S12

-

+
VOH

Port
IB

Motor

+8.4V

-

+
R

L

emf-
+

b

1N914

 EE345M Final Exam Spring 2008 Page 3 of 8

(20) Question 4. Consider a robot powered by two DC motors on the rear wheels, but the wheels
are not perfectly matched. One wheel has more friction than the other. Experimental analysis shows
the left wheel is slower than the right. The goal of this design is to go as fast as possible in a
straight line. There are optical sensors on both wheels. There are an equal number of stripes on each
wheel. Let NumLeft be the number of stripes counted on the left wheel. Let NumRight be the
number of stripes counted on the right wheel. The approach will be to operate the left wheel at full
speed and adjust the power to the right wheel so that the difference

error = NumRight - NumLeft
is driven to zero. If error is positive (right wheel is ahead of left wheel) then reduce power to the
right wheel. If error is negative (right is behind of left) then increase power to the right wheel.

cog

Passive
Wheels

Powered
Wheels

Powered
rear wheel

Passive
front wheelOptical

sensors

Part a) Assume the left wheel optical sensor is connected to PT0 and the right wheel optical sensor
is connected to PT1. The hardware is given. Write an initialization routine and two input capture
ISRs that measure NumRight and NumLeft in the background.

 EE345M Final Exam Spring 2008 Page 4 of 8

Part b) Assume the left wheel motor is interfaced to PT2 and the right wheel motor is interfaced to
PT3. Essentially there are two copies of the interface circuit shown in Question 3. Again, the
hardware is given. You will set PT2 high and use 8-bit PWM on PT3 to adjust power to the right
motor. Write an initialization routine that sets PT2=1, and initializes a 100 Hz 8-bit PWM on PT3.
Write a separate function that can be called to set the duty cycle of PT3 (0 to 255). Assume a 4
MHz E clock. PT3 does not have to be exactly 100 Hz, just approximately 100 Hz.

Part c) Let U be the 8-bit duty cycle to the right motor (0 to 255). Assume the time constant of the
motor is 500 ms. Develop equations (using integer math) you could use to calculate U from the
measured error. How often would you execute this equation? If you need some controller
constants, define them as K1 K2 K3 etc., specifying the sign of the constant without specifying
the actual value. Explain your rationale.

 EE345M Final Exam Spring 2008 Page 5 of 8

(15) Question 5. Consider the following implementation of a spinlock semaphore used with a
round robin preemptive scheduler.
void OS_Wait(char *semaPt){
 asm sei // Test and set is atomic
 while(*semaPt <= 0){ // disabled
 asm cli // disabled
 asm nop // enabled
 asm sei // enabled
 }
 (*semaPt)--; // disabled
 asm cli // disabled
} // enabled
void OS_Signal(char *semaPt){
 (*semaPt)++;}
Part a) The compiler generated this code for OS_Signal
 0000 b745 [1] TFR D,X
 0002 6200 [3] INC 0,X
 0004 3d [5] RTS
Are there any critical sections in OS_Signal? I.e., can two threads both call OS_Signal?
Justify your answer.

Part b) Design a new op code for the 9S12, and use it to rewrite OS_Wait so the spin lock
semaphore can be executed without critical sections and without disabling interrupts. Be VERY
specific about what the new instruction does (e.g., the INC 0,X instruction reads the 8-bit memory
value pointed to by Register X, adds one to the value, stores the result=value+1 back into memory,
sets the Z bit is the result is 0, sets the N bit if the result is negative, and sets the V bit on a
127+1=128 operation). The 16-bit pointer, semaPt, will be in Register D when OS_Wait is
called.

 EE345M Final Exam Spring 2008 Page 6 of 8

(10) Question 6. In order to measure noise, the sensor on a data acquisition system is removed, and
the inputs are grounded. The 10-bit 9S12 ADC is sampled at 4096 Hz, and the collected data are
converted to the frequency domain by calculating the FFT. On this scale, -54 db is the same as
about 5mV when converted to an equivalent voltage. Similarly, -80 db is the equivalent of 250 µV.

Part a) Is there any noise at all in this data? Justify your answer.

Part b) How would you suggest we redesign the system to improve signal to noise ratio?

 EE345M Final Exam Spring 2008 Page 7 of 8

(10) Question 7. Consider a producer/consumer problem linked by a FIFO queue. Both the
producer thread and the consumer thread operate in the background using interrupt synchronization.
The input device is a CAN receiver, and the output device is a SCI transmitter. When the CAN
input is ready an interrupt-38 is generated, and the producer thread (CAN input ISR) reads the data
and puts them into a FIFO. When the SCI output is idle, an interrupt-20 is generated, and the
consumer thread (SCI output ISR) gets data from the FIFO and writes them to the output device.

Input Producer Fifo
Fifo_Put Fifo_Get

Consumer Output

The CAN protocol is 200,000 bits/sec, 11-bit ID, 8 bytes of data. The SCI protocol is 10000
bits/sec, 8-bit data, 1 start bit, and 1 stop bit. Each CAN message contains 8 bytes of data, and the
CAN frames occur according to this repeating pattern (every 1 sec):
 Time = 0, CAN message received
 Time = 1ms, CAN message received
 Time = 2ms, CAN message received
 Followed by a 0.998 second pause
Part a) What is the average input bandwidth (that actually occurs)? Show your work.

Part b) What is the maximum output bandwidth (maximum possible)? Show your work.

Part c) What is the smallest size you could you make the FIFO and not lose data? Justify your
answer.

 EE345M Final Exam Spring 2008 Page 8 of 8

(20) Question 8. Consider a 9S12 system with 1 Mbyte of RAM stored in the $8000 to $BFFF
window and accessed using the PPAGE paging system. Each page is 16 kbytes. In this OS, all
global variables are allocated into this 1 Mbyte external RAM and shared amongst the user threads.
The RunPt, TCB/stacks and other OS variables are located in the internal $3800 to $3FFF RAM
(e.g., RunPt points into $3800-$3FFF). You are designing a preemptive thread scheduler for this
system (like Lab 18). What would you do with the PPAGE register on the thread switch? In
particular, make edit changes to this scheduler. Justify your answer. The foreground threads use
Mem_Read and Mem_Write to access global variables
struct addr20
{ unsigned char msb; // bits 19-14
 unsigned short lsw; // bits 13-0
};
typedef struct addr20 addr20Type;
char Mem_Read(addr20Type addr){ char *pt;
 PPAGE = addr.msb; // set address bits 19-14
 pt = (char *)(0x8000+addr.lsw); // set addr bits 13-0
 return *pt; // read access
}
void Mem_Write(addr20Type addr, char data){ char *pt;
 PPAGE = addr.msb; // set address bits 19-14
 pt = (char *)(0x8000+addr.lsw); // set addr 13-0
 *pt = data; // write access
}

struct TCB{

 struct TCB *Next; // Link to Next TCB

 unsigned char *StackPt; // Stack Pointer

 unsigned char TheStack[96]; // stack

};
typedef struct TCB TCBType;
typedef TCBType * TCBPtr;
TCBPtr RunPt; // Pointer to thread currently running
interrupt 11 void threadSwitchISR(void){
asm ldx RunPt

asm sts 2,x

 RunPt = RunPt->Next;

 TC3 = TCNT+1000; // Thread runs for a unit of time

 TFLG1 = 0x08; // acknowledge by clearing TC3F

asm ldx RunPt

asm lds 2,x

}

