
 EE345M Final Exam A Spring 2008 Page 1

Jonathan W. Valvano May 10, 2008, 9am-12n
(5) Question 1. The CRC 15-bit checksum will be wrong. Since no CAN controller correctly
receives this message, no acknowledgement bit will be sent. The transmitter checks for the presence
of this bit, and if no acknowledge is received, the message is retransmitted.
(5) Question 2. D (hardware trigger mode) has NO jitter!! (at least down to the stability of the
crystal).
(15) Question 3.
Part a) Since I need 1A, I will use the TIP120, that can handle 3A.
Part b) We use the data sheet of the TIP120 to find hfe=3000, Vbe=1.5V, Vce=0.8V at 1A.
Ib =Ic/3000= (VOH-VBE)/ Rb?) 1A/3000= (4.44-1.5)/ Rb , Rb= 3000(4.44-1.5) = 8.8kΩ. I will
choose a value from 1 to 5 kΩ, then test it, because the 3000 is only approximate.

Part c) Derive an equation for the motor (Ic) current as a function of time.
The voltage across both LC together is 8.4-Vce = 7.6V at time = 0+.
At time = 0+, the inductor is an open circuit.
At time = ∞, the inductor is a short circuit.
The current through LC is 0 at time = 0+
The current through LC is (8.4-0.8V)/50Ω= 152mA at time = ∞
 7.6V = Ic *R +L*d Ic/dt
General solution
 Ic = I0 + I1e-t/τ dIc/dt = - (I1/τ)e-t/τ
plug in
 7.6V = (I0 + I1e-t/τ)*R -L*(I1/τ)e-t/τ
Solve in general
 τ = L/R = 2 µsec
using initial conditions
 I0 = 7.6V/50Ω= 152mA
 I1 = -7.6V/50Ω = -152mA
Ic = 152mA*(1- e-t/2µs)

 EE345M Final Exam A Spring 2008 Page 2

http://www.greenandwhite.net/~chbut/new_page_28.htm

(20) Question 4. Consider a robot powered by two DC motors on the rear wheels.
Part a) Write an initialization routine and two input capture ISRs
unsigned char NumRight, NumLeft;
void Sensor_Init(void){
asm sei // make atomic
 TIOS &= ~0x03; // PT1,PT0 input capture
 DDRT &= ~0x03; // PT1,PT0 are input
 TSCR1 = 0x80; // enable TCNT, 667ns
 TCTL4 = (TCTL4&0xF0)|0x0A; // falling edges IC1,IC0
 TIE |= 0x03; // Arm IC1,IC0
 NumRight = NumLeft = 0;
asm cli
}
void interrupt 0 IC0Han(void){ // left wheel moved
 NumLeft++;
 TFLG1 = 0x01; // clear C0F
}
void interrupt 1 IC1Han(void){ // right wheel moved
 NumRight++;
 TFLG1 = 0x02; // clear C1F
}
Part b) The left wheel motor is connected to PT2 and the right wheel motor is connected to PT3.

 EE345M Final Exam A Spring 2008 Page 3

void Motor_Init(void){
 DDRT |= 0x0C; // PT2 and PT3 are output to motor
 MODRR |= 0x08; // PT3 associated with PWM
 PWME |= 0x08; // enable channel 3
 PWMPOL |= 0x08; // high at beginning, then low
 PWMCLK |= 0x08; // clock SB for channel 3
 PWMPRCLK &= ~0x70; // B is bus clock/1= 4MHz (0.25us)
// Eperiod*2*PWMSCLB*255*(2**0) about 10ms
// 0.25us*2*PWMSCLB*255*(2**0) about 10,000us
// PWMSCLB = 78, 0.25us*2*78*255*(2**0) = 9,945us
 PWMCAE &= ~0x08; // left aligned mode
 PWMCTL &= ~0x20; // no Concatenate 2+3
 PWMSCLB = 78; // SB prescaled B by 156 = 25.641kHz
 // Clock SB = Clock B / (2 * PWMSCLB)
 PWMPER3 = 255; // period3
 PWMDTY3 = 0; // duty cycle3, off
}
void Motor_OutRight(unsigned char U){
 PWMDTY3 = U;
}
Part c) Run PID controller every 50 ms (10 times faster than the time constant of the motor)
 error will be signed short so it can have the full -255 to +255 range

error = NumRight – NumLeft; // unsigned to signed conversion
 Up Ui Ud Last are all signed short variables

Up = (K1*error)/1000 // proportional term (K1 is negative)
Ui = Ui + (K2*error)/1000 // integral term (K2 is negative)
Ud = (K3*(error-last))/1000 // derivative term (K3 is negative)
last = error
U = Up+Ui+Ud
if(U<0) U=0;
if(U>255) U=255;
Motor_OutRight(U);

(15) Question 5. Spinlock semaphore used with a round robin preemptive scheduler.
Part a) There is no critical section in OS_Signal, because the read/modify/write to the global is
atomic
Part b) This instruction will use the standard methods for establishing the effective address. E.g.,
 wait $3800 ; 8-bit semaphore at memory location $3800
 wait 0,x ; 8-bit semaphore pointed to by Reg X
To make wait more general (to be used with blocking semaphores too) we will have the opcode
test the 8-bit value in memory. If the value is greater than or equal to 1, then the value is
decremented and the Zero bit (Z) is not set. If the value less than or equal to 0, then the value is not
changed and the Zero bit (Z) is set.
void OS_Wait(char *semaPt){
 asm tfr D,X // Register X points to the semaphore
 asm loop: wait 0,X // Z=1 if failed
 asm beq loop
} // enabled

 EE345M Final Exam A Spring 2008 Page 4

(10) Question 6. In order to measure noise, the sensor on a data acquisition system is removed
Part a) All signals (except DC) are less than the ADC resolution (there is no noise here), so what
looks like sampling error is simply the finite resolution caused by the 10-bit ADC.
Part b) Increase the number of bits in the ADC (use a 12-bit or 16-bit ADC).
(10) Question 7. Consider a producer/consumer problem linked by a FIFO queue.
Part a) Every 1 second, we receive 8*3=24 bytes. Bandwidth is 24 bytes/sec.
Part b) The maximum SCI bandwidth is 10000bits/sec*(1frame/10bits)*(1byte of
data/frame)=1000 bytes/sec
Part c) Assuming no hardware buffering in the SCI transmit channel, we need place for 22 bytes
Time Number of bytes in FIFO Interrupt action
0 8 CAN interrupt puts 8 bytes
1 8+8-1 = 15 CAN interrupt puts 8 bytes, SCI gets one
2 15+8-1 = 22 CAN interrupt puts 8 bytes, SCI gets one
3 22-1 = 21 SCI gets one
Assuming two bytes will be buffered in the SCI transmit channel, we need place for 21 bytes
Time Number of bytes in FIFO Interrupt action
0 8 CAN interrupt puts 8 bytes
0+ 8-2 = 6 SCI interrupts will remove two bytes
1 6+8 = 14 CAN interrupt puts 8 bytes
1+ 14-1 =13 SCI interrupt will remove one byte
2 13+8 = 21 CAN interrupt puts 8 bytes
2+ 21-1 =20 SCI interrupt will remove one byte
3+ 20-1 = 19 SCI interrupt will remove one byte
(20) Question 8. Like the PC, SP and other registers, the PPAGE must be switched.
struct TCB{
 struct TCB *Next; // Link to Next TCB
 unsigned char *StackPt; // Stack Pointer
 unsigned char ThePPAGE;
 unsigned char TheStack[97]; // stack
};
typedef struct TCB TCBType;
typedef TCBType * TCBPtr;
TCBPtr RunPt; // Pointer to thread currently running
interrupt 11 void threadSwitchISR(void){
asm ldx RunPt
asm sts 2,x
 RunPt->ThePPAGE = PPAGE; // save PPAGE
 RunPt = RunPt->Next;
 PPAGE = RunPt->ThePPAGE; // restore PPAGE
 TC3 = TCNT+1000; // Thread runs for a unit of time
 TFLG1 = 0x08; // acknowledge by clearing TC3F
asm ldx RunPt
asm lds 2,x
}

