
 EE345M Final Exam Spring 2009 Solution Page 1

Jonathan W. Valvano May 14, 2009, 2-5pm
 (6) Question 1. Consider how the ACK bit is used in a CAN network.
Part a) The transmitter outputs a recessive 1 and if a receiver gets an incorrect LRC, it drives a
dominate 0.
Part b) The ACK bit high means all receivers got a correct LRC and the message is valid.
Part c) The ACK bit low means at least one receiver got an incorrect LRC, the message is invalid,
and the transmitter will resend the message.
(4) Question 2. A Power Budget is a quick first order calculation that gives you a ballpark figure
of the “total average current” supported by your power source. From the system specifications we
are given how long the system must operate without replacing batteries, tlife in hours. From the
battery datasheet we determine the storage capacity of the battery, E in mA-hours. Be aware,
however, that for many batteries the storage capacity depends also on current.
 Average Current must be less than E/ tlife
(15) Question 3.
Part a) I’d use a TIP120 because the maximum ICE (3A) is larger than the 200 mA needed. (We
could also have used the TIP29, TIP31 or TIP41). A MOSFET would be ok too.
Part b) We use the data sheet of the TIP120 to find hfe=3000, Vbe=1.3V, Vce=0.75V at 0.2A.
Ib =Ic/3000= (VOH-VBE)/Rb, 0.2A/3000= (4.44-1.3)/ Rb , Rb= 15000(4.44-1.3) = 47kΩ. I will
choose a value of 4.7 kΩ, then test it, because the 3000 is only approximate.

Part c) The current goes from 200 mA to 0 instantaneously. This dI/dt is negative infinity. Without
the diode, this causes the voltage across the inductor to be negative infinity (V=Ldi/dt). The voltage
at VC becomes positive infinity. With the diode, 4ns after VC goes above 8.4V, the 1N914 becomes
forward biased and will short any current to the 8.4V battery clamping voltage to 8.4V (or a little
bit above 8.4V). The 1N914 is called a snubber diode and is chosen because it is fast (4ns).

 EE345M Final Exam Spring 2009 Solution Page 2

+infinity

time0- 0+
0.75

8.4

VC

9ish

time0- 0+
0.75

8.4

VC

with 1N914
without 1N914

(10) Question 4. Design a two-pole analog low-pass filter with a cutoff frequency of 10 Hz. Notice
that C1 is two 0.22μF capacitors in parallel, making a 0.44 μF.

RA RA

C1A

C2A

initial starting point

 fc (Hz) 1
 R (kohm) 10

 C1 (µF) 141.4
 C2 (µF) 70.7

first design step is to select the cutoff
 fc (Hz) 10 fill this in

 RA (kohm) 10 same as initial R
 C1A (µF) 2.2505 is 141.4/(2•π•fc)
 C2A (µF) 1.1252 is 70.7/(2•π•fc) or 0.5•C1A

second design step is to choose convenient Capacitor values
 fc (Hz) 10 same as previous fc

 RB (kohm) 51.147 new value to match exact fc
 C1B (µF) 0.44 fill this in
 C2B (µF) 0.22 is 0.5•C1B

third design step is to choose a convenient resistor value
 fc (Hz) 10.029 cutoff based on these convenient values

 RC (kohm) 51.000 fill this value in
 C1C (µF) 0.44 same as C1B
 C2C (µF) 0.22 same as C2B

 EE345M Final Exam Spring 2009 Solution Page 3

(25) Question 5. First, add an entry into the TCB defining the function to call
struct TCB{
 struct TCB *Next; // Link to Next TCB
 unsigned char *StackPt; // Stack Pointer
 void (*TheFunction)(void); // user program
 unsigned char MoreStack[101]; // additional stack
 unsigned char InitialCCR;
 unsigned char InitialRegB;
 unsigned char InitialRegA;
 unsigned short InitialRegX;
 unsigned short InitialRegY;
 void (*InitialPC)(void);
};

Next we define a private system function that calls the user program over and over.
void UserMain(void){
 for(;;){
 RunPt->TheFunction(); // call user program
 }
}

During initialization we set the TheFunction parameter in the TCB and attach the UserMain.
short OS_AddThread(void(*fp)(void)){
 if(NumThread >= MAX_THREADS){
 return 0; // structure is full
 }
 if(NumThread){
 SystemTCB[NumThread-1].Next = &SystemTCB[NumThread];
 }
 SystemTCB[NumThread].StackPt = &SystemTCB[NumThread].InitialCCR;
 SystemTCB[NumThread].TheFunction = fp; // user code
 SystemTCB[NumThread].InitialCCR = 0x40; // I bit clear
 SystemTCB[NumThread].InitialPC = &UserMain; // Initial PC
 SystemTCB[NumThread].Next = &SystemTCB[0]; // link
 NumThread++;
 return 1;
}
(16) Question 6. Four design choices one must make when implementing a spectrum analyzer.
1) ADC range. This defines the smallest and largest voltage that can be measured.
2) ADC precision. Range and precision define the voltage resolution of the system. Resolution is
Range/Precision; where precision is given in alternatives
3) ADC sampling rate, fs. The sampling rate defines the range of frequencies that can be measured:
0 to ½ fs.
4) The buffer size n. The buffer size and the sampling rate together define the frequency resolution
of the spectrum analyzer, Δf = fs/n.
Other choices one could have made are FFT windowing, data format (fixed point, floating point),
and zero padding the data.

 EE345M Final Exam Spring 2009 Solution Page 4

(24) Question 7. The overall goal is to design a feedback motor controller based on IC.

IC

VCE
+
-

9S12

Port

Motor

+8.4V

-

+
R

L

emf-
+

1N914

+5V
0.1μF

TLC2272

Gain = 50

10kΩ 490kΩ

V1
V2

PAD0

10kΩ0.5Ω

4.7kΩ
TIP120

(12) Part a) Because the maximum current is 0.2A and the maximum voltage loss is 0.1V, the
largest resistor we can use is 0.5Ω. We can place the 0.5Ω resistor anywhere in series with the
motor current. The simplest place is between the emitter and ground. This way, a simple voltage
amplifier with a gain of 5/0.1=50 will convert the 0 to 0.2A current into 0 to +5V on PAD0. Any
rail-to-rail op amp is OK. The current IC will be

IC= V1/0.5Ω,
or IC= 2*V1.
Because of the gain 50 amp, V1 = V2/50. If we let n be the 10-bit sample, then V2 =5*n/1024. Thus,

IC= V2/25,
or IC= 5*n/1024/25,
or IC= n/5120.
Converting to 0.001A fixed-point, we have

result = 1000*n/5120,
or result = 25*n/128,
or result = (25*n+64)/128.
At n=1023, we get result equal to 199, which is close to the IC of 0.2A defined in Problem 3. If we
add 64 to 25*n before dividing by 128, it will round to the closed integer. Notice also that
25*1023+64 is 25639, therefore overflow can not occur.
(12) Part b) Write one C function that samples the ADC channel 0 and calculates IC.
unsigned short Motor_Ic(void){ unsigned short n,Ic;
 ATDCTL5 = 0x80; // start channel 0
 while((ATDSTAT1&0x01)==0){}; // wait for CCF0
 n = ATD0DR0; // 0 to 1023
 Ic = (25*n+64)/128; // 0 to 200
 return Ic;
}

