
 EE345M/EE380L Final Exam Spring 2011 Page 1

Jonathan W. Valvano May 16, 2011, 2-5pm Closed book part
(3) Question 1. The barrel-shifter allows for right/left shift without time penalty. So binary fixed-point will run faster
than decimal fixed-point.

(3) Question 2. Yes, one ISR can interrupt another ISR on the LM3S8962. If an ISR is running at priority level n, then
an interrupt of higher priority (lower priority level) can interrupt.

(3) Question 3. The answer depends on both n and the actual relationships. Let the first be A*n2. If the second is
B*n*log(n). Choose the first if A*n2 is less than B*n*log(n), otherwise choose the second.

(3) Question 4. 10ms is 10 samples, so the transform will be z-10 X(z)

(3) Question 5. Cycle-steal has lower latency because it does not have to finish the instruction. It can occur in the
middle of an instruction.

(3) Question 6. There are only three wires in the bus (two signals and ground). Because the two signal lines can
encode one bit, that bit can only flow one direction.

(3) Question 7. In the FAT table, there is linked list (or chain) defining all the free blocks. Because all free blocks can
be used to create one big file, the FAT has no external fragmentation.

(3) Question 8. No, bounded waiting does not mean a there is a maximum time a thread must wait for a resource. It
means once blocked on a resource, there will be a finite number of threads allowed to use the resource ahead of the
blocked thread.

(3) Question 9. The largest source of latency occurring in background threads occurs running higher priority threads
or running with interrupts disabled.

(3) Question 10. The logical address is divided into two fields: page and offset. For example, the logical address
$12345 might be divided into page=$12 and offset=$345. The page field is used as an index to the page table. For
example, the page table entry at index $12 might contain $89. The value in the page table determines the frame. The
physical address is composed of the frame and offset. In this example, the physical address would be $89345.

(20) Question 11. A FIFO queue used to pass 32-bit data between foreground threads.
Put
 Wait(&DataRoomLeft)
 bWait(&Mutex)
 Enter data into Fifo
 bSignal(&Mutex)
 Signal(&DataAvailable)

Get
 Wait(&DataAvailable)
 bWait(&Mutex)
 Remove data from Fifo
 bSignal(&Mutex)
 Signal(&DataRoomLeft)

#define FIFOSIZE 16 // can be any size
static long Mutex = 0; // implements mutual exclusion
static long DataRoomLeft = FIFOSIZE; // size of queue
static long DataAvailable = 0; // number currently in FIFO
typedef char dataType;
dataType static volatile *PutPt; // put next
dataType static volatile *GetPt; // get next
dataType static Fifo[FIFOSIZE];

void Fifo_Init(void){
 OS_Wait(&Mutex); // this is critical
 PutPt = GetPt = &Fifo[0]; // Empty
 DataRoomLeft = FIFOSIZE; // size of queue
 DataAvailable = 0; // number currently in FIFO
 OS_Signal(&Mutex); // end of critical section
}

 EE345M/EE380L Final Exam Spring 2011 Page 2

void Fifo_Put(dataType data){
 OS_Wait(&DataRoomLeft); // wait for space
 OS_Wait(&Mutex); // this is critical
 *(PutPt) = data; // Put
 PutPt = PutPt+1;
 if(PutPt ==&Fifo[FIFOSIZE]){
 PutPt = &Fifo[0]; // wrap
 }
 OS_Signal(&Mutex); // end of critical section
 OS_Signal(&DataAvailable); // one more entry
}
void Fifo_Get(dataType *datapt){
 OS_Wait(&DataAvailable); // wait for data
 OS_Wait(&Mutex); // this is critical
 *datapt = *(GetPt++); // return data
 if(GetPt==&Fifo[FIFOSIZE]){
 GetPt = &Fifo[0]; // wrap
 }
 OS_Signal(&Mutex); // end of critical section
 OS_Signal(&DataRoomLeft); // more space
}
Or we could implement
dataType Fifo_Get(void){ dataType data;
 OS_Wait(&DataAvailable); // wait for data
 OS_Wait(&Mutex); // this is critical
 data = *(GetPt++); // get data
 if(GetPt==&Fifo[FIFOSIZE]){
 GetPt = &Fifo[0]; // wrap
 }
 OS_Signal(&Mutex); // end of critical section
 OS_Signal(&DataRoomLeft); // more space
 return data;
}
Open book part

(10) Question 12. This problem becomes simple because only one foreground thread in each processor will call
OS_bWait and OS_bSignal. This means there are no critical sections.
void OS_bInit(shared long *semaPt, long value){
 *semaPt = value; // Initialize
}
void OS_bWait(shared long *semaPt){
 while(*semaPt == 0){}; // spin if zero
 *semaPt = 0;
}
void OS_bSignal(shared long *semaPt){
 *semaPt = 1;
}
This semaphore could be used to stream data through a double buffer from the main computer to the graphics

(10) Question 13. Consider the following motor interface. MOSFETs are voltage controlled switches and need a large
voltage to fully turn on.
Part a) VGS is only 3.3V, so the ID current is extremely limited. This circuit operates on the figure even lower than the
VGS = 4V curve.

 EE345M/EE380L Final Exam Spring 2011 Page 3

Part b) This DC analysis so the inductor is a short. There is a total of 8.4 - -42.4 – 0.8V (50V) across the resistor. So the
current is 50V/5Ω = 10 A.

(10) Question 14. This analog circuit is a voltage threshold detector with hysteresis. The voltage at the – terminal of the
op amp is fixed at 3.3V/2 = 1.65V. If the voltage at the + terminal is above 1.65V, then Vout becomes 3.3V. If the voltage
at the + terminal is below 1.65V, then Vout becomes 0 V. If Vout is already 0 V, then we find Vin, such that the + terminal
of the op amp is 1.65V. This means Vin *100/(110) = 1.65V, which is Vin = 1.815 V. Therefore, if the output is 0V it will
switch when Vin goes above 1.815V. If Vout is already 3.3 V, then we again find Vin, such that the + terminal of the op
amp is 1.65V. This means Vin+(3.3-Vin)*10/(110) = 1.65V, Vin-(Vin/11) = 1.35V, which is Vin = 1.485 V. Therefore, if
the output is 3.3V it will switch when Vin goes below 1.485V. This creates a 0.33V hysteresis, meaning if the noise is less
than 3.3V, this threshold detector will remove it, not causing extra pulses due to the noise.

Voltage
Output

Voltage Input
0

0.33

1.485 1.815 3.3
0

3.3

(5) Question 15. This is actual measured data on the Tx and Rx pins of the microcontroller.
Part a) The extra zero in the Rx signal is the acknowledgement from the receiver, which is obviously not sent by the
transmitter.

Part b) From the wave we see the frame takes about 110 µs to transmit. At 500,000 bits/sec, this is about 55 bits. There
are 11 bits for the ID and 36 bits for everything that is not data. So these non-data bits take 94 µs. Each added byte
takes 16 more µs to transmit. So the choices are
Data Time µs
0 94
1 110
2 136
From the measurement, it is clearly not 94 or 136 ms, so I think there are exactly 8 bits of data in the frame. The
bandwidth of this transmission is 8bits/110µs, which is 72727 bits/sec.

(15) Question 16.
Part a) Each thread has its own TCB and stack. The threads are in a circular linked list. This list is static and all threads
are ready to run. Make changes to this TCB to accommodate the multiprocessor architecture.
struct TCB {
 long *stackPointer; // pointer to top of stack
 unsigned long Id; // thread number, zero if this TCB is free
 struct TCB *Next; // TCBs are in a circular linked list
 int Status; // -1 not running, 0 to 15 running
};
typedef struct TCB TCBType;
typedef TCBType * TCBPtr;
TCBPtr RunPt[16]; // thread currently running by each processor
TCBPtr OldRunPt; // thread being suspended
TCBPtr NewRunPt; // thread being launched next

Part b) Every 10 ms in each processor, but staggered by 10ms/16, so there will be no critical sections on the thread
switching access to the TCBs.

Part c) Show the Systick ISR running in each processor. All 16 processors run this code.
void SysTick_Handler(void) { int me= Me();

 EE345M/EE380L Final Exam Spring 2011 Page 4

 OldRunPt = RunPt[me]; // Pointer to running thread
 OldRunPt ->Status = 0; // not running
 NewRunPt = OldRunPt; // find next thread to run
 NewRunPt = NewRunPt ->Next; // skip at least one
 while((NewRunPt->Status >= 0){ // do not run if already running
 NewRunPt = NewRunPt ->Next; // find one not running
 }
 NewRunPt->Status = Me(); // running
 RunPt[Me] = NewRunPt;
 NVIC_INT_CTRL_R = 0x10000000; // set pendsv bit to 1, force interrupt
} // end SysTick_Handler

Part d) Show the PendSV ISR running in each processor.
PendSV_Handler
 CPSID I ; Prevent interruption during context switch
 PUSH {R4-R11} ; Save remaining regs r4-11
 LDR R0, = OldRunPt ; R0=pointer to RunPt, old thread
 LDR R1, [R0] ; OldRunPt->stackPointer = SP;
 STR SP, [R1] ; save SP of process being switched out

 LDR R1, = NewRunPt ; R1=pointer to NewRunPt, next thread to run
 LDR R2, [R1] ; R2=value of NewRunPt

 LDR SP, [R2] ; new thread SP; SP = NewRunPt->stackPointer;
 POP {R4-R11} ; restore regs r4-11

 CPSIE I ; tasks run with I=0
 BX LR ; Exception return will restore remaining context

