
 EE345M Quiz 1 Fall 2003 Page 1 of 4

Jonathan W. Valvano

Jonathan W. Valvano First Name: _______________ Last Name:____________________
October 15, 2003, 1 to 1:50pm
 This is an open book, open notes exam. You may put answers on the backs of the pages, but
please don’t turn in any extra sheets.

(20) Question 1. Assume an input serial channel is operating at a baud rate of 100 bits/sec. The
interface must satisfy a real-time constraint, in order to guarantee that no data is lost. The channel
uses interrupt synchronization, and the ISR is shown below in part b). The header file for RxFifo is
#define RXFIFOSIZE 8
/* Number of characters in Fifo, is full when it has FifoSize-1 characters */
void RxFifo_Init(void);

/* Enter one character into the fifo
 Inputs: 8-bit data
 Outputs: true if data is properly saved */
int RxFifo_Put(char);

/* Remove one character from the fifo
 Inputs: pointer to place to save 8-bit data
 Outputs: true if data is valid */
int RxFifo_Get(char *);

/* Check the status of the fifo
 Inputs: none
 Outputs: true if there is any data in the fifo */
int RxFifo_Status(void);

(10) Part a) What specific timing constraint must be satisfied to prevent loss of data? Be as specific
as possible, giving a quantitative answer.

(10) Part b) Modify the following code to count the number of characters lost? Put the result in a
global.
#pragma interrupt_handler SciHandler
void SciHandler(void){

 if(SC0SR1 & RDRF){

 RxFifo_Put(SC0DRL); // clears RDRF

 }

}

 EE345M Quiz 1 Fall 2003 Page 2 of 4

Jonathan W. Valvano

(25) Question 2. Consider a problem of running two foreground threads using a preemptive
scheduler with semaphore synchronization (like Lab 17.) There are two shared 16-bit global
variables which contain the position of an object:
short TheX,TheY;
Both, the client and server wish to access this data. The basic shell of this operation is
given. Define one or more semaphores, then add calls to the following three functions in order to
properly synchronize the interactions between client and server. The goal is to prevent
corrupted data.
int OS_InitSemaphore(Sema4Type *semaPt, short value);
void OS_Wait(Sema4Type *semaPt);
void OS_Signal(Sema4Type *semaPt);
You will define one or more semaphores and calls to the semaphore functions, otherwise no other
changes are allowed. Assume server is run first. You may assume the only accesses to TheX and
TheY in the entire software system are explicitly shown here.

void server(void){

 short sX,sY;

 TheX = 5;

 TheY = 6;

 sInit(); // initialization

 while(1){

 sX= TheX;

 sY= TheY;

 sProcess(&sX,&sY); // body

 }

}

void client(void){

 short cX,cY;

 cInit(); // initialization

 while(1){

 cX= TheX;

 cY= TheY;

 cProcess(cX,cY); // body

 }

}

If you wish to make no changes at all, explain why, otherwise for each semaphore you add, explain
what it means to be 0, 1 etc.

 EE345M Quiz 1 Fall 2003 Page 3 of 4

Jonathan W. Valvano

(20) Question 3. Consider the following thread switch system, which is essentially the initial
system used in Lab 17 with a status field added to implement blocking. The changes to the original
Lab17 starter file are shown in bold face.

struct TCB{
 Sema4Type *status;
 struct TCB *Next;
 unsigned char *StackPt;
 unsigned char Id;
 unsigned char MoreStack[100];
 unsigned char InitialCCR;
 unsigned char InitialRegB;
 unsigned char InitialRegA;
 unsigned int InitialRegX;
 unsigned int InitialRegY;
 void (*InitialPC)(void);
};
void threadSwitch(void){

 RunPt = RunPt->Next;

 while(RunPt->Status)

 RunPt = RunPt->Next;

 PORTJ = RunPt->Id;
}

void threadSwitchISR(void){

 asm(" ldx _RunPt\n"

 " sts 2,x");

 RunPt = RunPt->Next;

 PORTJ = RunPt->Id;

 TC3 = TCNT+TimeSlice;

 TFLG1 = 0x08;

 asm(" ldx _RunPt\n"

 " lds 2,x");

}

(10) Part a) Explain why this system crashes just because status was added to the TCB.

(10) Part b) Without moving the position of the status entry (leaving it the TCB structure
unchanged), make other changes to the above program to fix the bug.

 EE345M Quiz 1 Fall 2003 Page 4 of 4

Jonathan W. Valvano

(20) Question 4. Lab 17 measured a time-jitter. It was usually a small number.
(10) Part a) How is time-jitter defined? What does it mean?

(10) Part b) The time-jitter causes a voltage measurement error. Specifically, what is the
relationship between time-jitter and voltage error?

(15) Question 5. What bad thing might happen if OS_Wait does not disable interrupts? I.e., what
can go wrong with the following spinlock implementation?

void OS_Wait(Sema4Type *semaPt){
 while(semaPt->Counter <= 0){
 }
 (semaPt->Counter)--;
}

