
 EE345M Spring 2000 Quiz1 Page 1 of 4

Jonathan W. Valvano First:_________________ Last:_____________________
February 25, 2000, 11:00am-11:50am

This is an open book, open notes exam. You must put your answers on these pages only,
you can use the back. You have 50 minutes, so please allocate your time accordingly.
Please read the entire quiz before starting.

(45) Question 1. In this problem you will design a period meter using interrupting input capture.
The digital input signal is connected to PT7. The range of periods is 100 µs to 100 ms. You do not
need to check for overflow, i.e., you may assume the period will be between 100 µs to 100 ms.
(10) Part a) What is the best period measurement resolution that covers the entire range, assuming a
16-bit precision.

(5) Part b) To store period data in memory, you will need a fixed-point number system. What fixed-
point format is best? In particular, how would you represent the period 12.346789 ms in memory?

(30) Part b) Modify this program from Chapter 6 so that the period measurement resolution
matches part a) and the input is on PT7. Change both the code and comments.
// PT1/IC1 input = external signal
// rising edge to rising edge
// resolution = 500ns
// Range = 36 µs to 32 ms,
// no overflow checking
// IC1 interrupt each period,
unsigned int Period; // units of 500 ns
unsigned int First; // TCNT first edge
unsigned char Done; // Set each rising
void Ritual(void){
 asm(" sei"); // make atomic
 TIOS &= 0xFD; // PT1 input capture
 DDRT &= 0xFD; // PT1 is input
 TSCR = 0x80; // enable TCNT
 TMSK2= 0x32; // 500ns clock
 TCTL4 = (TCTL4&0xF3)|0x04; // rising
 First = TCNT; // first will be wrong
 Done=0; // set on subsequent
 TFLG1 = 0x02; // Clear C1F
 TMSK1 |= 0x02; // Arm IC1
 asm(" cli");}
#pragma interrupt_handler TIC1handler()
void TIC1handler(void){
 Period=TC1-First;
 First=TC1; // Setup for next
 TFLG1=0x02; // ack by clearing C1F
 Done=0xFF;}
#pragma abs_address:0xffec
void (*TC1_vector[])() = { TIC1handler};
#pragma end_abs_address

 EE345M Spring 2000 Quiz1 Page 2 of 4

(10) Question 2. In this problem consider this C function, which performs a write followed by
read access to a global variable.
int r; // global variable
int tt(int x, int y){
 r=x; // write to global
 r=r+y; // read from global
 return r;}
(5) Part a) The following assembly listing was generated by the ICC12 cross-compiler. Is the function
reentrant? I added the comments. Give a short justification for your answer. In particular, if you think
it is not reentrant, place arrows between pairs of instructions at places where if an interrupt were to
occur, data would be lost.
ICC12 Version 5
 ; y -> 6,x
 ; x -> 2,x
 F03B _tt::
 F03B 3B pshd
 F03C 34 pshx
 F03D B775 tfr s,x
 F03F 1805020800 movw 2,x,_r ; r=x;
 F044 FC0800 ldd _r ; RegD=r
 F047 E306 addd 6,x ; RegD=r+y
 F049 7C0800 std _r ; r=r+y
 F04C FC0800 ldd _r
 F04F B757 tfr x,s
 F051 30 pulx
 F052 1B82 leas 2,sp
 F054 3D rts ; return r in RegD

(5) Part b) The following assembly listing was generated by the Hiware cross-compiler. Is the
function reentrant? I added the comments. Give a short justification for your answer. In particular, if
you think it is not reentrant, place arrows between pairs of instructions at places where if an interrupt
were to occur, data would be lost.
HI-CROSS+ ANSI-C/cC++ Compiler for HC12 V-5.0.15, Dec 15 1998
Function: tt
 0000 3b pshd
 0001 ec84 ldd 4,sp ; RegD=y
 0003 e380 addd 0,sp ; RegD=x+y
 0005 7c0000 std r ; r=x+y
 0008 30 pulx
 0009 3d rts ; return r in RegD

 EE345M Spring 2000 Quiz1 Page 3 of 4

(45) Question 3. In this problem you will interface an 8192 byte ROM to the MC68HC812A4
running in expanded narrow mode. Use CSP0 to place the ROM at $E000 to $FFFF. The 6812 is
running at 8 MHz. When the chip enable, CE, is high its data outputs will contain the data at the
specified address. The access timing is given by.

150ns

100ns 0ns

A12-A0

CE

Data

(15) Part a) Show the interface. Label chip numbers, but not pin numbers.

CE

A12-A0

D7-D0

ROM
MC68HC812A4

MODA
MODB

E

R/W

CSP0

A15-A0

D7-D0

16

13

8

8

(15) Part b) Develop equations for RDA and RDR, and use them to determine the minimum number
of cycle stretches required for this interface. Assume a 10ns gate delay.

 EE345M Spring 2000 Quiz1 Page 4 of 4

(15) Part c) Show the combined read cycle timing diagram. Show E, R/W , A15-A0, CSP0 , CE,
RDA, and RDR. All signals are outputs except Read Data Required. Use arrows to signify causal
relations. Show the timing delays as arrows with numbers in nanoseconds. Calculate the actual RDA
and RDR intervals.

