
 EE345M Spring 2002 Quiz 1 Solution Page 1 of 2

Jonathan W. Valvano March 6, 2002, 9:00am-9:50am

(25) Question 1. The status of the FIFO can tell if the system is I/O-bound or CPU-bound. I/O
bound means the bandwidth is limited by the speed of the I/O device (a faster I/O device will
improve bandwidth.) CPU bound means the bandwidth is limited by the speed of the
computer/software (a faster computer or better compiler will improve bandwidth.)
Part a) In order to make them private (accessible only from within this file.)
Part b) Make it public
unsigned int TxFifo_Size(void){
 return(TxPutPt–TxGetPt+10)%10);
}

Part c)
void debugFIFO(void){
 Count[TxFifo_Size()]++;
}

Part d) If the system were I/O bound, then the FIFO would fill up and the software would usually
have to wait for there to be room in the FIFO. The Count[9] would have a lot of entries. E.g.,
Count[0] = 1
Count[1] = 1
Count[2] = 1
Count[3] = 1
Count[4] = 1
Count[5] = 1
Count[6] = 1
Count[7] = 1
Count[8] = 100
Count[9] = 1000
(25) Question 2. The goal is to find a fast-enough memory so that cycle stretching is not required.
Part a) Since OE is grounded the value of tOE doesn’t matter.
60+ tACC ≤ 125 - 30 so tACC ≤ 35
60+ tCE ≤ 125 - 30 so tCE ≤ 35
Part b) Draw the read-cycle timing diagram for the new interface.

 EE345M Spring 2002 Quiz 1 Solution Page 2 of 2

 (50) Question 3. The memory for the TCB is dynamically allocated on the heap.
Part a) We will put back ThreadId and initialize it to 0. This function needs to be atomic
//******** OS_AddThread ***************
// add a foreground thread to the scheduler
// Inputs: pointer to a void/void foreground function
// Outputs: 1 if successful, 0 if this thread cannot be added
int OS_AddThread(void(*fp)(void)){ TCBPtr pt; unsigned char saveCCR;
 if(pt=malloc(sizeof(TCBType))){
 return 0; // heap is full
 }
asm("tpa\n" /* previous interrupt enable */
 "staa %SaveCCR\n" /* save previous */
 "sei"); /* make atomic */
 if(RunPt){
 pt->Next = RunPt->Next; // place right after RunPt
 RunPt->Next = pt;
 }
 else{
 pt->Next = pt; // first one, linked to itself
 RunPt = pt;
 }
 pt->StackPt = &(pt->InitialCCR);
 pt->Id = ThreadId++; // thread numbers go 0,1,2,3,...
 pt->InitialCCR = 0x40;
 pt->InitialPC = fp;
asm("ldaa %SaveCCR\n" /* recall previous */
 "tap"); /* end critical section */
 return 1;
}

Part b) Similar to OS_Launch
//******** OS_Kill ***************
// kill this thread, launch a new thread
// Inputs: none
// Outputs: will not return
TCBPtr Killpt,PrevPt;
void OS_Kill(void){ // ***NO LOCAL VARIABLES*****
asm(" sei"); // must be atomic
 KillPt = RunPt; // to one to kill
 PrevPt = RunPt; // search for previous
 while(PrevPt->Next != RunPt){ // quit when pt points to previous
 PrevPt = PrevPt->Next;
 }
 PrevPt->Next = RunPt->Next; // unlink this thread
 RunPt = Killpt->Next; // next one to run
asm(" ldx _RunPt\n"
 " lds 2,x"): // new valid stack
 free(Killpt); // return TCB to heap
 TC3 = TCNT+TIMESLICE;
 TFLG1 = 0x08; // Clear C3F
 PORTJ = RunPt->Id;
asm(" rti"); // Launch next Thread
}

