
 EE345M Quiz 1 Spring 2010 Page 1 of 5

Jonathan W. Valvano

Jonathan W. Valvano First Name: _______________ Last Name:____________________
February 26, 2010, 10:00 to 10:50am
 Quiz 1 is a closed book exam. You may have one 8.5 by 11 inch sheet of hand-written crib
notes, but no books or electronic devices. You may put answers on the backs of the pages, and
please staple the crib sheet to your exam.
(6) Question 1. The following is copied from the serial port starter application. It has been edited to
show only serial port output. The two lines in bold were added for debugging.
void USART1_IRQHandler (void) { volatile unsigned int IIR;
 struct buf_st *p;
 GPIOB->ODR |= 0x1000; // bit 12 on LED
 IIR = USART1->SR;
 if (IIR & USART_FLAG_TXE) {
 USART1->SR &= ~USART_FLAG_TXE; // clear interrupt
 p = &tbuf;
 if (p->in != p->out) {
 USART1->DR = (p->buf [p->out & (TBUF_SIZE-1)] & 0x1FF);
 p->out++;
 tx_restart = 0;
 }
 else {
 tx_restart = 1;
 USART1->CR1 &= ~USART_FLAG_TXE; // disable TX interrupt
 }
 }
 GPIOB->ODR &= ~0x1000; // bit 12 off LED
}
int OutChar (int c) {
 struct buf_st *p = &tbuf; // If the buffer is full, return an error value
 if (SIO_TBUFLEN >= TBUF_SIZE) return (-1);
 p->buf [p->in & (TBUF_SIZE - 1)] = c; // Add data to the transmit buffer.
 p->in++;
 if (tx_restart) { // If transmit interrupt is disabled, enable it
 tx_restart = 0;
 USART1->CR1 |= USART_FLAG_TXE; // enable TX interrupt
 }
 return (0);
}
Assume the baud rate is 1000 bits/sec, and PortB bit 12 is an output connected to the logic analyzer.
Also assume the USART1 hardware is initially idle, and its FIFO is empty. Which of the following
measurements do you expect to observe on PB12 after OutChar is called once?

answer A)

answer B)

answer C)

answer D)

answer E)

time when
OutChar

called
10 ms 10 ms

 EE345M Quiz 1 Spring 2010 Page 2 of 5

Jonathan W. Valvano

(24) Question 2. Select the best term from the word bank that describes each definition.
Part a) A technique to periodically increase the priority of low-priority threads so that low priority
threads occasionally get run. The increase is temporary.

Part b) The condition where low priority threads never get run.

Part c) The condition where thread 1 is waiting for a unique resource held by thread 2, and thread 2
is waiting for a unique resource held by thread 1.

Part d) The condition where a thread is not allowed to run because it needs something that is
unavailable.

Part e) The condition where once a thread blocks, there are a finite number of threads that will be
allowed to proceed before this thread is allowed to proceed.

Part f) An operation that once started will run to completion without interruption

Part g) An implementation using a FIFO or mailbox that separates data input from data processing.

Part h) A technique that could be used to prevent the user from executing I/O on a driver until after
the user calls the appropriate initialization.

Part i) A scheduling algorithm that assigns priority linearly related to how often a thread needs to
run. Threads needing to run more often have a higher priority.

Part j) An OS feature that allows the user to run user-defined software at specific places within the
OS. These programs are extra for the user’s convenience and not required by the OS itself.

Part k) An OS feature that allows you to use the OS in safety-critical applications.

Part l) A scheduling algorithm with round robin order but varying time slice. If a thread blocks on
I/O, its time slice is reduced. If it runs to completion of a time slice, its time slice is increased.

word bank
active
aging
atomic
blocked
bounded buffer
bounded waiting
breakdown utilization
certification
critical section
deadlock
earliest slack time first
exponential queue
fork
killed

hook
maximum latency
nonreentrant
normalized mean response time
path expression
preemptive scheduler
producer-consumer
rate monotonic
reentrant
rendezvous
round robin scheduler
sleeping
spin lock
starvation

 EE345M Quiz 1 Spring 2010 Page 3 of 5

Jonathan W. Valvano

(10) Question 3. There is a sampling capacitor at the input of most ADC converters. The ADC is
started by temporarily connecting the input voltage to this capacitor using a transistor switch. This
transistor switch is controlled by a trigger signal. This trigger establishes when the ADC is started.
In a real-time data acquisition it is important to control timing of this trigger. List three ways you
could configure the ADC to trigger on the STM32F103 (our microcontroller)

(5) Question 4. There are many names for Signal and Wait. Sort the following terms into two
groups according to whether the term means Signal or the term means Wait.
 Pend
 Post

verhogen
probeer te verlagen

Wait

Signal

(5) Question 5. What would happen in your RTOS if the background task the user attached using
OS_AddButtonTask (tamper button) were to call the spinlock OS_Wait? Assume TIM1 (the
one used for OS_AddPeriodicThread) runs at priority 0, Systick (used for the preemptive
thread switch) runs at priority 1, tamper runs at priority 2, USART1 runs at priority 2, and PendSV
runs at priority 15. Assume also the semaphore value is 0. Pick the best answer.
A) The stack would be corrupted because the thread switcher would switch out this background

task, causing the system to crash.
B) The tamper task will spin because the semaphore is 0, causing the USART1 ISR to be locked

out. However, the periodic thread and the foreground threads (everything except tamper and
USART1) will continue to run.

C) The tamper task will spin forever, locking out all other components. The system stops running.
D) The tamper task will spin and no foreground threads will run. The periodic thread will continue

to run. If the periodic thread calls OS_Signal, the tamper will become unstuck, and
everything will resume executing.

E) The tamper task will spin and no foreground threads will run. Periodical and USART1 threads
will continue to run. If the USART1 thread calls OS_Signal, the tamper will become unstuck,
and everything will resume executing.

 EE345M Quiz 1 Spring 2010 Page 4 of 5

Jonathan W. Valvano

(25) Question 6. Consider a system that employs a preemptive real-time OS like Labs 2,3. There
are multiple threads that wish to output to the serial port. Consider this example with two
foreground threads (thread1 thread2) and one background thread (isr) that all call Output.
Busy is a global variable, initialized to 0.
void thread1(void){
long data;
 init1();
 for(;;){
 data = calc1();
 Output(1,data);
 }
}

void thread2(void){
long data;
 init2();
 for(;;){
 data = calc2();
 Output(2,data);
 }
}

// TIM2 interrupt
void isr(void){
long data;
 data = calc3();
 Output(3,data);
 TIM2->SR &= ~1;
}

The first parameter of Output is an id, and the second parameter is a number to output. This
program has one or more critical sections. Add code to the following implementation to remove the
critical section(s). You are allowed to disable/enable interrupts for short periods, but not during the
printf. You should not introduce new critical sections. You CAN NOT allow threads to block or
spin. If the serial port is busy, then the output is simply skipped. You may not change any thread
code or the Output function prototype. Basically you will add software to this existing Output
function, but not thread1, thread2 or isr. Be careful not to crash in the interrupt service
routine. If you do not remember the exact assembly code, you can answer in pseudo-code.

int Busy=0;
void Output (int id, long num){

 if(Busy == 0){

 Busy = 1;

 printf("Id = %u, num = %d\r\n",id,num);

 Busy = 0;

 }

}

 EE345M Quiz 1 Spring 2010 Page 5 of 5

Jonathan W. Valvano

(25) Question 7. Solve the following synchronization problem using semaphores. All threads are
running in the foreground using a preemptive round robin scheduler. Thread 1 will execute first.
Thread 1 will attempt to fun1 once. Thread 2 will attempt to fun2 once. Thread 3 will wait for
either fun1 or fun2 to complete, then execute fun3 over and over. It is possible for fun1 and
fun2 to A) both complete eventually; B) just one completes and the other hangs up forever; or C)
both do not ever complete. If neither fun1 nor fun2 completes, then fun3 is never executed. You
may assume the following three semaphore functions are available.
// ******** Init ************
// initialize semaphore
// input: pointer to a semaphore
// output: none
void Init(Sema4Type *semaPt, long value);

// ******** Wait ************
// decrement semaphore and block if less than zero
// input: pointer to a counting semaphore
// output: none
void Wait(Sema4Type *semaPt);

// ******** Signal ************
// increment semaphore, wakeup blocked thread if appropriate
// input: pointer to a counting semaphore
// output: none
void Signal(Sema4Type *semaPt);

Part a) Create the semaphores needed using Sema4Type.

Part b) Add calls to the semaphore functions as needed to implement the synchronization

void thread1(void){

 fun1();

 OS_Kill();
}

void thread2(void){

 fun2();

 OS_Kill();
}

void thread3(void){
 for(;;){

 fun3();

 }
}

