
 EE345M Quiz 1 Spring 2010 Solution Page 1

Jonathan W. Valvano

Jonathan W. Valvano February 26, 2010, 10:00 to 10:50am

(6) Question 1. Refer back to Lab 1 preparation question 2e). The serial port has a transmit data
register and a transmit shift register. The answer is C because the first interrupt occurs right away
and begins to send the one character. As soon as the serial port puts the first character into the shift
register, the data register is empty and a second interrupt occurs. This second interrupt notices the
FIFO is empty and disarms the serial port transmitter.

(24) Question 2. Select the best term from the word bank that describes each definition.
Part a) Aging is a technique to periodically increase the priority of low-priority threads so that low

priority threads occasionally get run. The increase is temporary.
Part b) Starvation is where low priority threads never get run.
Part c) Deadlock is where thread 1 is waiting for a unique resource held by thread 2, and thread 2 is

waiting for a unique resource held by thread 1.
Part d) Blocked is the condition where a thread is not allowed to run because it needs something

that is unavailable.
Part e) Bounded waiting is the condition where once a thread blocks, there are a finite number of

threads that will be allowed to proceed before this thread is allowed to proceed.
Part f) An atomic operation, once started, will run to completion without interruption
Part g) Producer-consumer or bounded buffer problem uses a FIFO or mailbox that separates

data input from data processing.
Part h) We could use path expression to prevent the user from executing I/O on a driver until after

the user calls the appropriate initialization.
Part i) A rate monotonic scheduling algorithm assigns priority linearly related to how often a

thread needs to run. Threads needing to run more often have a higher priority.
Part j) A hook is an OS feature that allows the user to run user-defined software at specific places

within the OS. These programs are extra for the user’s convenience and not required by the
OS itself.

Part k) An OS needs certification to be used the OS in safety-critical applications.
Part l) An exponential queue is a scheduling algorithm with round robin order but varying time

slice. If a thread blocks on I/O, its time slice is reduced. If it runs to completion of a time
slice, its time slice is increased.

 (10) Question 3.
1) Blinky used continuous mode. A new ADC is triggered immediately after the last conversion is
complete.
2) You can set up the ADC in single conversion, software start. A new ADC is triggered by
software. This is like the way we used the ADC on the 9S12 in EE319K and EE345L.
3) You can set up the ADC in single conversion, hardware start. A new ADC is triggered by one of
seven hardware events. The most common hardware is a periodic timer capture. This way the ADC
is started exactly fs times per second without jitter.

(5) Question 4. There are many names for Signal and Wait.

Wait
Pend (used in uCOS-II)

probeer te verlagen

Signal
Post (used in uCOS-II)

verhogen

 EE345M Quiz 1 Spring 2010 Solution Page 2

Jonathan W. Valvano

(5) Question 5. What would happen if the background task called the spinlock OS_Wait?
D) The tamper task will spin and no foreground threads will run. The periodic thread will continue

to run. If the periodic thread calls OS_Signal, the tamper will become unstuck, and
everything will resume executing.

(25) Question 6. foreground threads and one background thread all call Output.
int Busy=0;
void Output (int id, long num){ long sr; // a place to save I-bit
; assembly to read PRIMASK and save it in sr
; assembly to disable interrupts
 if(Busy == 0){
 Busy = 1;
; assembly to restore PRIMASK (I bit) from value saved in sr
 printf("Id = %u, num = %d\r\n",id,num);
 Busy = 0;
 return;
 }
; assembly to restore PRIMASK (I bit) from value saved in sr
}

(25) Question 7. Solve the following synchronization problem using semaphores.
Part a) You can create semaphores by defining them as variables with Sema4Type.
Sema4Type Ready; // becomes true if either fun1 or fun2 complete

Part b) Add calls to the semaphore functions as needed to implement the synchronization

void thread1(void){
 Init(&Ready,0)
 fun1();
 Signal(&Ready);
 OS_Kill();
}

void thread2(void){
 fun2();
 Signal(&Ready);
 OS_Kill();
}

void thread3(void){
 for(;;){
 Wait(&Ready);
 fun3();
 Signal(&Ready);
 }
}

