
 EE345M/EE380L Quiz 1 Spring 2012 Page 1 of 8

Jonathan W. Valvano

Jonathan W. Valvano First Name: _______________ Last Name:____________________
March 2, 2012, 10:00 to 10:50am
 Quiz 1 is a closed book exam. You may have one 8.5 by 11 inch sheet of hand-written crib
notes, but no books or electronic devices. You may put answers on the backs of the pages.
(10) Question 0. Please staple your crib sheet to your exam. Your crib sheet will be graded on
content and correctness.
(4) Question 1. There is a sampling capacitor at the input of most ADC converters. The ADC is
started by temporarily connecting the input voltage to this capacitor using a transistor switch. This
transistor switch is controlled by a trigger signal. This trigger establishes when the ADC is started.
In a real-time data acquisition it is important to control timing of this trigger. The LM3S8962 has
eight different ways the ADC can be configured to trigger. List four of the ways.

(6) Question 2. For the robot you will have four IR distance sensors; each has an analog signal
related to the distance to the nearest object. In order to drive the robot straight down the track, your
partner determined that all four sensors must be sampled 50 times a second. The sensors will be
attached to ADC channels 0, 1, 2, and 3. The autopilot requires all four distance measurements at
the same time. You are using sequencer 0 triggered with a period timer; an ADC interrupt should
occur after the 4 conversions are complete. What initialization values would you put in
ADCSSCTL0 and ADCSSMUX0? You do not need to write other code; rather just specify the 32-
bit values for these two registers. (See data sheets on the following pages).

ADC0_SSCTL0_R = // ADCSSCTL0

ADC0_SSMUX0_R = //ADCSSMUX0

 EE345M/EE380L Quiz 1 Spring 2012 Page 2 of 8

Jonathan W. Valvano

… bits 27 to 4 are similar to 31-28 and 3-0

 EE345M/EE380L Quiz 1 Spring 2012 Page 3 of 8

Jonathan W. Valvano

… bits MUX6 to MUX1 are similar to bits MUX7 and MUX0

 EE345M/EE380L Quiz 1 Spring 2012 Page 4 of 8

Jonathan W. Valvano

(5) Question 3. Is it possible on the Cortex M3 to perform a memory read cycle fetching an op code
at the very same instant as it performs a memory write cycle pushing data onto the stack? If yes,
explain how. If not, explain why not.

(5) Question 4. There are two R13s. What is special about R13? Why are there two of them?

(12) Question 5. Select the best term from Chapter 4 that describes each definition.
Part a) This is a condition where once a thread blocks, there are a finite number of threads that will
be allowed to proceed before this thread is allowed to proceed.

Part b) This technique could be used to prevent the user from executing I/O on a driver until after
the user calls the appropriate initialization.

Part c) This is a scheduling algorithm that assigns priority linearly related to how often a thread
needs to run. Threads needing to run more often have a higher priority.

Part d) This OS feature allows the user to run user-defined software at specific places within the
OS. These programs are extra for the user’s convenience and not required by the OS itself.

Part e) This OS feature allows you to use the OS in safety-critical applications.

Part f) This situation can occur in a priority thread scheduler where a high-priority thread is
waiting on a resource owned by a low-priority thread.

(8) Question 6. Consider this filter written in C with the assembly code created by the compiler.

 EE345M/EE380L Quiz 1 Spring 2012 Page 5 of 8

Jonathan W. Valvano

LowPassFilter:
 LDR r2,[pc,#172] ; @0x0000052C
 LDR r1,[r2,#0x00]
 ADD r0,r0,r1
 ASR r0,r0,#1
 STR r0,[r2,#0x00]
 BX lr

long LowPassFilter(const long x){
static long y=0;
 y = (x+y)/2;
 return y;
}

Part a) Is this implementation of the function reentrant? Justify

Part b) How is the input parameters x passed?

Part c) What is in LR during the execution of the function?

(10) Question 7. Explain why a deadlock cannot occur when using a monitor for thread
synchronization. In particular, describe how the monitor operates so deadlock will not occur.

 EE345M/EE380L Quiz 1 Spring 2012 Page 6 of 8

Jonathan W. Valvano

(15) Question 8. Consider these foreground threads that I want to run with your Lab 2 OS, one at a
time. These three threads are exactly as shown; no other code inside these threads exists. In each
case you may assume the usual Lab 2 tasks (producer, consumer, etc.) are running.

void t1(void){
int i;

for(i=0;i<1000;i++){
}

}

void t2(void){
int i;

OS_AddThread(&t2);

for(i=0;i<1000;i++){
}

OS_Kill();

}

void t3(void){
int i;

OS_AddThread(&t3);
OS_AddThread(&t3);

for(i=0;i<1000;i++){
}

OS_Kill();
OS_Kill();

}

Assume for each case there are the other Lab 2 threads active that are not related to the one thread
that I want to add. Assume your round robin preemptive thread scheduler runs every 2 ms.
Part a) If I just add thread t1, would your OS crash when t1 finishes (and does not call
OS_Kill). If it crashes, explain why. If it doesn’t crash, explain why not.

Part b) If I just add thread t2, explain why or why not your OS will run out of TCBs.

Part c) If I just add thread t3, explain why or why not your OS will run out of TCBs.

 EE345M/EE380L Quiz 1 Spring 2012 Page 7 of 8

Jonathan W. Valvano

(25) Question 9. You may assume you have the following Lab 2 OS functions available to you
(you do not need to write them). Assume the user task runs to completion in less than 1 ms.
void OS_AddThread(void(*task)(void));
void OS_Kill(void);
void OS_Sleep(unsigned long time); // in ms
void OS_Wait(long *semaPt);
void OS_Signal(long *semaPt);

There is a positive logic switch attached to Port D bit 6. The software driver for this is
#define PD6 (*((volatile unsigned long *)0x40007100))
void (*PD6Task)(void); // user task running on PD6 rising edge
//******** OSAddPD6Task ********
// add a background task to run on rise of PD6, priority 3
// Inputs: pointer to a void/void background user function
void OS_AddPD6Task(void(*task)(void)){
 SYSCTL_RCGC2_R |= SYSCTL_RCGC2_GPIOD; // activate port D
 PD6Task = task; // user function
 GPIO_PORTD_DIR_R &= ~0x40; // make PD6 in
 GPIO_PORTD_DEN_R |= 0x40; // enable digital I/O on PD6
 GPIO_PORTD_IS_R &= ~0x40; // PD6 is edge-sensitive
 GPIO_PORTD_IBE_R &= ~0x40; // PD6 is not both edges
 GPIO_PORTD_IEV_R |= 0x40; // PD6 rising edge event
 GPIO_PORTD_ICR_R = 0x40; // clear flag6
 GPIO_PORTD_IM_R |= 0x40; // enable interrupt on PD6
 GPIO_PORTD_PUR_R |= 0x40; // PD6 does not have pullup
 NVIC_PRI0_R = (NVIC_PRI0_R&0x00FFFFFF)|(3<<29); // 3, bits 31-29
 NVIC_EN0_R |= NVIC_EN0_INT3;// enable interrupt 3 in NVIC
}

void GPIOPortD_Handler(void){
 (*PD6Task)(); // execute user task
 GPIO_PORTD_ICR_R = 0x40; // acknowledge flag6
}

Unfortunately the switch has bounce. On both a touch and release, there can be from 0 to 2ms of
bounce (extra edges). However, sometimes there is no bounce. You may assume the switch is
touched for at least 50 ms (meaning the maximum typing rate is 10 strikes per second). This means
the minimum time the input pin will be low is 50 ms, and the minimum time the input pin will be
high will also be 50 ms. There is no maximum time the signal will be high or low. The user task
should be run immediately on each touch (minimize latency). There can be no backward jumps.

PD6

call (*PD6Task)();

2ms max 2ms max
50ms min

latency

 EE345M/EE380L Quiz 1 Spring 2012 Page 8 of 8

Jonathan W. Valvano

Part a) Describe changes if any you wish to make to the initialization code (only show changes).

Part b) Rewrite the ISR to handle the bounce while still minimizing latency. In particular, the user
task should be run from the ISR without delay after the touch. Of course, the user task should be
run only once after a touch, and never run after a release. Show any other software needed.

