
 EE445M/EE380L Quiz 1 Spring 2013 Page 1 of 5

Jonathan W. Valvano

Jonathan W. Valvano First Name: _______________ Last Name:____________________
March 1, 2013, 10:00 to 10:50am
 Quiz 1 is a closed book exam. You may have one 8.5 by 11 inch sheet of hand-written crib
notes, but no books or electronic devices. You may put answers on the backs of the pages.
(10) Question 0. Please staple your crib sheet to your exam. Your crib sheet will be graded on
content and correctness.
(10) Question 1. Assume a priority scheduler with blocking semaphores. Threads can have priority
from 0 (highest) to 15 (lowest). The OS solves starvation using aging. The priority number of a
thread which does not run is decremented once every t1 seconds. Once it runs, the priority is
restored to its regular level. The scheduler runs every t2 seconds. There are at most n threads active
at a time. Assume a particular thread has a regular priority of m, where 0 ≤ m ≤ 15. Assuming the
thread does not block, kill, or sleep, derive an equation to calculate the maximum time in between
executions of this thread of priority m.

(5) Question 2. Give the two most important factors for effective debugging.

 EE445M/EE380L Quiz 1 Spring 2013 Page 2 of 5

Jonathan W. Valvano

(20) Question 3. Select the best term that describes each definition.
A formal model that can be used to study data flow where nodes are
connected using FIFO queues, such that we can guarantee that the
FIFOs never become full.

Software execution that cannot be divided or interrupted. Once
started, the operation will run to its completion without interruption.

The condition where once a thread begins to wait on a resource,
there are a finite number of threads that will be allowed to proceed
before this thread is allowed to proceed.

A process where a governing body (e.g., FDA, FCC, DOD etc.)
gives approval for the use of the device. It usually involves
demonstrating the device meets or exceeds safety and performance
criteria.

A scheduling algorithm with round robin order but varying time
slice. If a thread blocks on I/O, its time slice is reduced. If it runs to
completion of a time slice, its time slice is increased.

A scenario that occurs when two or more threads are all blocked
each waiting for the other with no hope of recovery.

An indirect function call added to a software system that allows the
user to attach their programs to run at strategic times, created at run
time and do not require recompiling the entire system.

A characteristic when the presence of the collection of information
itself does not affect the parameters being measured.

A software technique to guarantee subfunctions within a module are
executed in a proper sequence. For example, it forces the user to
initialize I/O device before attempting to perform I/O.

The percentage of resource utilization below which the RTOS can
guarantee that all deadlines will be met.

 EE445M/EE380L Quiz 1 Spring 2013 Page 3 of 5

Jonathan W. Valvano

(10) Question 4. Consider this example showing a foreground and background thread. The
assembly code generated by the compiler follows.
unsigned long Sec,Min;
void Foreground(void){
 printf("%02d:%02d/n", Sec, Min);
}

void Timer0A_Handler(void){
 TIMER0_ICR_R = TIMER_ICR_CAECINT;
 Sec = Sec + 1;
 if(Sec == 60){
 Sec = 0; Min++;
 }
}

0x00000128 Foreground
0x00000128 B510 PUSH {r4,lr}
0x0000012A 48FE LDR r0,[pc,#1016] ;address of Min
0x0000012C 6802 LDR r2,[r0,#0x00] ;value of Min
0x0000012E 48FE LDR r0,[pc,#1016] ;address of Sec
0x00000130 6801 LDR r1,[r0,#0x00] ;value of Sec
0x00000132 A0FE ADR r0,{pc}+2 ;pointer to strg
0x00000134 F000FFD2 BL printf
0x00000138 BD10 POP {r4,pc}
0x0000013A Timer0A_Handler
0x0000013A 2004 MOVS r0,#0x04 ;TIMER_ICR_CAECINT
0x0000013C 49FD LDR r1,[pc,#1012] ;address of TIMER0_ICR_R
0x0000013E 6248 STR r0,[r1,#0x24] ;Clear interrupt trigger, ack
0x00000140 48F9 LDR r0,[pc,#996] ;address of Sec
0x00000142 6800 LDR r0,[r0,#0x00] ;value of Sec
0x00000144 1C40 ADDS r0,r0,#1 ;Sec+1
0x00000146 49F8 LDR r1,[pc,#992] ;address of Sec
0x00000148 6008 STR r0,[r1,#0x00] ;new value of sec
0x0000014A 4608 MOV r0,r1
0x0000014C 6800 LDR r0,[r0,#0x00] ;value of Sec
0x0000014E 283C CMP r0,#0x3C ;equal to 60?
0x00000150 D106 BNE done
0x00000152 2000 MOVS r0,#0x00
0x00000154 6008 STR r0,[r1,#0x00] ;Sec = 0
0x00000156 48F3 LDR r0,[pc,#972] ;address of Min
0x00000158 6800 LDR r0,[r0,#0x00] ;value of Min
0x0000015A 1C40 ADDS r0,r0,#1 ;Min+1
0x0000015C 49F1 LDR r1,[pc,#964] ;address of Min
0x0000015E 6008 STR r0,[r1,#0x00] ;new value of Min
0x00000160 4770 done BX lr
0x0000052C strg DCB 0x25,0x30,0x32,0x64,0x3A,0x25,0x30,0x32,0x64,0x0A,0x00
Part a) There is a critical section. Explain the consequences of this critical section by giving a list
of four or five printf outputs illustrating what mistake could occur. This prints Sec:Min.

Part b) Specify the exact beginning and end of the critical section by adding two arrows pointing
into the assembly code.

 EE445M/EE380L Quiz 1 Spring 2013 Page 4 of 5

Jonathan W. Valvano

(20) Question 5. Threads t1 t2 and t3 are foreground threads running with a round robin scheduler.
In this system, each thread initializes SysTick before reading the counter. The goal of this problem
is to define semaphores and add shared variables such that NVIC_ST registers are initialized
exactly once. For example, t2 finishes execution of SysTick_Init first, in which case t1 and t3
will skip over its initialization steps. For example, t1 and t2 may never execute, in which case t3
executes SysTick_Init then reads NVIC_ST_CURRENT_R. over and over. It is important not
to execute the initialization twice, and you must prevent a thread from reading the counter before it
has been initialized. You cannot add/move any reads or writes to the NVIC_ST registers. You may
make calls to OS_Wait and OS_Signal without showing the implementation of these two. You
must use semaphores. Other than inside OS_Wait/OS_Signal, you are not allowed to disable
interrupts. If you add semaphores or variables, give them good names and specify initial values.
// Add semaphores and variables here

void SysTick_Init(void){

 NVIC_ST_CTRL_R = 0; // disable SysTick
 NVIC_ST_RELOAD_R = 0x00FFFFFF; // maximum reload value
 NVIC_ST_CURRENT_R = 0; // clears SysTick counter
 NVIC_ST_CTRL_R = 0x05; // enable SysTick with core clock

}

void t1(void){
unsigned long n,t[256];
 n = 0;
 SysTick_Init();
 while(1){
 t[n]=NVIC_ST_CURRENT_R;
 n = (n+1)&0xFF;
 // other stuff
 }
}

void t2(void){
unsigned long n,t[256];
 n = 0;
 SysTick_Init();
 while(1){
 t[n]=NVIC_ST_CURRENT_R;
 n = (n+1)&0xFF;
 // other stuff
 }
}

void t3(void){
unsigned long n,t[256];
 n = 0;
 SysTick_Init();
 while(1){
 t[n]=NVIC_ST_CURRENT_R;
 n = (n+1)&0xFF;
 // other stuff
 }
}

 EE445M/EE380L Quiz 1 Spring 2013 Page 5 of 5

Jonathan W. Valvano

(25) Question 6. You may assume someone else has written code that maintains a sorted list of
TCBs containing active threads. This list is not circular; it is a simple linear list. There is an
ActivePt that points to the front of this linked list, which is the highest priority active thread.
Blocking semaphores are used. If a thread is sleeping, blocked, or killed someone else removes it
from this active list. Furthermore, there cannot be two threads of the same priority. There is a
RunPt that points to thread that is currently running. You will write the PendSV handler that is
used to suspend the currently running thread, find the next thread to run, and launch the new thread.
The launched thread may or may not be the same thread that was just suspended. The TCB structure
IS REVERSED from the one in the book. The TCB structure is
struct tcb{
 struct tcb *next; // linked-list pointer
 long *sp; // pointer to stack, valid for threads not running
};
typedef struct tcb tcbType;
Write the assembly code for the PendSV handler that implements the thread switch for this priority
scheduler. You do not have to modify the links in the linear linked list, simply suspend the running
thread, choose the best thread to run, and launch the new thread.

